A105321 Convolution of binomial(1,n) and Gould's sequence A001316.
1, 3, 4, 6, 6, 6, 8, 12, 10, 6, 8, 12, 12, 12, 16, 24, 18, 6, 8, 12, 12, 12, 16, 24, 20, 12, 16, 24, 24, 24, 32, 48, 34, 6, 8, 12, 12, 12, 16, 24, 20, 12, 16, 24, 24, 24, 32, 48, 36, 12, 16, 24, 24, 24, 32, 48, 40, 24, 32, 48, 48, 48, 64, 96, 66, 6, 8, 12, 12, 12, 16, 24, 20, 12, 16
Offset: 0
Examples
From _Omar E. Pol_, May 29 2010: (Start) If written as a triangle: 1; 3; 4; 6,6; 6,8,12,10; 6,8,12,12,12,16,24,18; 6,8,12,12,12,16,24,20,12,16,24,24,24,32,48,34; 6,8,12,12,12,16,24,20,12,16,24,24,24,32,48,36,12,16,24,24,24,32,48,40,24,32,48,48,48,64,96,66; (End)
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- T. Pisanski and T. W. Tucker, Growth in Repeated Truncations of Maps, Preprint series, Univ. of Ljubljana, Vol. 38 (2000), 696.
- T. Pisanski and T. W. Tucker, Growth in Repeated Truncations of Maps, Atti. Sem. Mat. Fis. Univ. Modena, Vol. 49 (2001), 167-176.
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS - _Omar E. Pol_, May 29 2010
Programs
-
Haskell
a105321 n = if n == 0 then 1 else a001316 n + a001316 (n - 1) -- Reinhard Zumkeller, Nov 14 2014
-
Maple
nmax := 74: A001316 := n -> if n <= -1 then 0 else 2^add(i, i=convert(n, base, 2)) fi: for p from 0 to ceil(log[2](nmax)) do for n from 1 to nmax/(p+2)+1 do a((2*n-1)*2^p) := (2^p+2) * A001316(n-1) od: od: a(0) :=1: seq(a(n), n=0..nmax); # Johannes W. Meijer, Jan 28 2013
-
Mathematica
f[n_] := Sum[Binomial[1, n - k]Mod[Binomial[k, j], 2], {k, 0, n}, {j, 0, k}]; Array[f, 75, 0] (* Robert G. Wilson v, Jun 28 2010 *)
-
PARI
a(n) = sum(k=0, n, binomial(1, n-k)*sum(j=0, k, binomial(k, j) % 2)); \\ Michel Marcus, Apr 29 2018
-
Python
def A105321(n): return (1<
Chai Wah Wu, Jul 30 2025 -
Python
# (fast way for big vectors) import numpy # (version >= 2.0.0) n_up_to = 2**22 A000079 = 1 << numpy.arange(n_up_to.bit_length()) A001316 = A000079[(numpy.bitwise_count(numpy.arange(n_up_to)))] A105321 = A001316 A105321[1:] += A001316[0:-1] print(A105321[0:100]) # Karl-Heinz Hofmann, Aug 01 2025
Formula
G.f. (1+x)*Product{k>=0, 1+2x^(2^k)};
a(n) = Sum_{k=0..n, binomial(1, n-k)*Sum_{j=0..k, binomial(k, j) mod 2}}.
a(n) = 2*A048460(n) for n>=2. - Omar E. Pol, Jan 02 2011
a((2*n-1)*2^p) = (2^p+2)*A001316(n-1), p >= 0 and n >= 1, with a(0) = 1. - Johannes W. Meijer, Jan 28 2013
Comments