A105331 Numbers of the form 2^n*(2^(n+1)+2n+1) where 2^(n+1)+2n+1 is prime.
3, 14, 52, 184, 656, 34688, 2118656, 134438912, 537346048, 9007202811510784, 2417851639318318791262208, 633825300114170432793740312576, 2535301200456572518883997515776
Offset: 1
Examples
9007202811510784 is in the sequence because 9007202811510784 = 2^26*(2^27 + 2*26 + 1) and 2^27 + 2*26 + 1 is prime.
References
- J.-M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Ellipses, Problème 723, page 93.
Programs
-
Mathematica
Do[If[PrimeQ[2^(m + 1) + 2m + 1], Print[2^m(2^(m + 1) + 2m + 1)]], {m, 0, 110}] 2^# (2^(#+1)+2#+1)&/@Select[Range[0,100],PrimeQ[2^(#+1)+2#+1]&] (* Harvey P. Dale, Nov 13 2012 *)
Comments