cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105346 3-almost primes whose indices are 3-almost primes.

Original entry on oeis.org

42, 52, 76, 92, 116, 117, 125, 174, 182, 186, 212, 230, 266, 275, 282, 285, 316, 318, 325, 385, 406, 410, 423, 428, 436, 455, 470, 474, 507, 508, 534, 575, 604, 605, 618, 627, 654, 657, 670, 678, 682, 705, 710, 730, 754, 762, 772, 788, 834, 861, 903, 931
Offset: 1

Views

Author

Jonathan Vos Post, Apr 30 2005

Keywords

Comments

The n-th 3-almost prime function applied to itself. This is the 3-almost prime equivalent of A091022, the latter being the n-th 2-almost prime function applied to itself. Note that this new iterated 3-almost prime sequence begins with the meaning of "Life, the Universe and Everything" and then generalizes to include the number of playing cards in a deck and the boiling point of water on the Fahrenheit scale.

Examples

			a(1) = 3-almost-prime(3-almost-prime(1)) = 3-almost-prime(8) = 42.
a(2) = 3-almost-prime(3-almost-prime(2)) = 3-almost-prime(12) = 52.
a(3) = 3-almost-prime(3-almost-prime(3)) = 3-almost-prime(18) = 76.
		

Crossrefs

Programs

  • Maple
    isA014612 := proc(n) option remember ; RETURN( numtheory[bigomega](n) = 3) ; end: A014612 := proc(n) option remember ; if n =1 then 8; else for a from procname(n-1)+1 do if isA014612(a) then RETURN(a) ; fi; od; fi; end: for n from 1 to 100 do q := A014612(A014612(n)) ; printf("%d,",q) ; od: # R. J. Mathar, Jan 27 2009
  • Mathematica
    With[{tap=Select[Range[2000],PrimeOmega[#]==3&]},Table[tap[[tap[[n]]]],{n,100}]] (* Harvey P. Dale, May 20 2019 *)
  • PARI
    do(lim)=my(v=List(), t); forprime(p=2, lim\4, forprime(q=2, min(lim\(2*p), p), t=p*q; forprime(r=2, min(lim\t, q), listput(v, t*r)))); v=Set(v); t=setsearch(v,#v); if(!t, t=setsearch(v,#v,1)-1); vector(t,i,v[v[i]]) \\ Charles R Greathouse IV, Feb 05 2017

Formula

a(n) = A014612(A014612(n)).

Extensions

Extended by R. J. Mathar, Jan 27 2009