A105346 3-almost primes whose indices are 3-almost primes.
42, 52, 76, 92, 116, 117, 125, 174, 182, 186, 212, 230, 266, 275, 282, 285, 316, 318, 325, 385, 406, 410, 423, 428, 436, 455, 470, 474, 507, 508, 534, 575, 604, 605, 618, 627, 654, 657, 670, 678, 682, 705, 710, 730, 754, 762, 772, 788, 834, 861, 903, 931
Offset: 1
Examples
a(1) = 3-almost-prime(3-almost-prime(1)) = 3-almost-prime(8) = 42. a(2) = 3-almost-prime(3-almost-prime(2)) = 3-almost-prime(12) = 52. a(3) = 3-almost-prime(3-almost-prime(3)) = 3-almost-prime(18) = 76.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Almost Prime.
Programs
-
Maple
isA014612 := proc(n) option remember ; RETURN( numtheory[bigomega](n) = 3) ; end: A014612 := proc(n) option remember ; if n =1 then 8; else for a from procname(n-1)+1 do if isA014612(a) then RETURN(a) ; fi; od; fi; end: for n from 1 to 100 do q := A014612(A014612(n)) ; printf("%d,",q) ; od: # R. J. Mathar, Jan 27 2009
-
Mathematica
With[{tap=Select[Range[2000],PrimeOmega[#]==3&]},Table[tap[[tap[[n]]]],{n,100}]] (* Harvey P. Dale, May 20 2019 *)
-
PARI
do(lim)=my(v=List(), t); forprime(p=2, lim\4, forprime(q=2, min(lim\(2*p), p), t=p*q; forprime(r=2, min(lim\t, q), listput(v, t*r)))); v=Set(v); t=setsearch(v,#v); if(!t, t=setsearch(v,#v,1)-1); vector(t,i,v[v[i]]) \\ Charles R Greathouse IV, Feb 05 2017
Extensions
Extended by R. J. Mathar, Jan 27 2009
Comments