cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105372 Decimal expansion of Hypergeometric2F1[ -(1/4),3/4,1,1] = sqrt(Pi)/(Gamma[1/4]*Gamma[5/4]).

Original entry on oeis.org

5, 3, 9, 3, 5, 2, 6, 0, 1, 1, 8, 8, 3, 7, 9, 3, 5, 6, 6, 6, 7, 9, 3, 5, 7, 2, 2, 3, 5, 5, 5, 5, 2, 7, 3, 2, 7, 6, 5, 8, 6, 8, 9, 6, 5, 4, 4, 3, 0, 4, 0, 1, 3, 0, 3, 3, 9, 9, 4, 6, 6, 3, 1, 8, 6, 3, 8, 8, 2, 9, 8, 8, 4, 8, 6, 5, 1, 5, 6, 8, 2, 8, 1, 5, 5, 9, 2, 1, 3, 7, 2, 2, 7, 5, 3, 3, 7, 7, 1, 4
Offset: 0

Views

Author

Zak Seidov, Apr 02 2005

Keywords

Comments

This constant appears in solution to an ODE considered in A104996, A104997.

Examples

			0.53935260118837935666793572235555273276586896544304013033994...
		

Crossrefs

Programs

  • Maple
    evalf(1/EllipticK(1/sqrt(2)),120); # Vaclav Kotesovec, Jun 15 2015
  • Mathematica
    RealDigits[1/EllipticK[1/2],10,120][[1]] (* Vaclav Kotesovec, Jun 15 2015 *)
  • PARI
    sqrt(Pi)/(gamma(1/4)*gamma(5/4)) \\ G. C. Greubel, Jan 09 2017

Formula

Hypergeometric2F1[ -(1/4), 3/4, 1, 1] = Sqrt[Pi]/(Gamma[1/4]*Gamma[5/4]).
From Vaclav Kotesovec, Jun 15 2015: (Start)
4*sqrt(Pi)/Gamma(1/4)^2.
1 / EllipticK(1/sqrt(2)) (Maple notation).
1 / EllipticK[1/2] (Mathematica notation).
(End)
Equals Product_{k>=1} (1 + (-1)^k/(2*k)). - Amiram Eldar, Aug 26 2020

Extensions

Last digit corrected by Vaclav Kotesovec, Jun 15 2015