cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105392 Frobenius number of the subsemigroup of the natural numbers generated by successive pairs of Lucas numbers.

Original entry on oeis.org

0, 5, 17, 59, 169, 475, 1287, 3449, 9149, 24155, 63557, 166919, 437839, 1147645, 3006777, 7875419, 20623889, 54003395, 141397847, 370208849, 969258949, 2537616955, 6643671117, 17393524559, 45537109919, 119218140725
Offset: 1

Views

Author

Jonathan Vos Post, May 01 2005

Keywords

Examples

			a(3) = 17 because the 3rd and 4th Lucas numbers are 4 and 7, so
a(3) = (4-1)*(7-1)-1 = 17. Or, a(3)=17 because 17 is the largest positive
integer that is not a nonnegative linear combination of 4 and 7.
		

Crossrefs

Programs

  • Maple
    A000204 := proc(n) option remember; if n = 1 then 1; elif n = 2 then 3; else procname(n-1)+procname(n-2) ; end if; end proc:
    A105392 := proc(n) A000204(2*n+1)-A000204(n+2)+(-1)^n ; end proc:
    seq(A105392(n),n=0..20) ; # R. J. Mathar, Nov 16 2010

Formula

a(n) = (L(n)-1)*(L(n+1)-1)-1 where L(n) = A000204(n).
a(n) = A002878(n)-A000204(n+2)+(-1)^n, for n>1. [Ralf Stephan, Nov 15 2010, index shifted by R. J. Mathar, Nov 16 2010]
G.f.: x^2*(5+2*x+3*x^2-x^4)/(1+x)/(1-3*x+x^2)/(1-x-x^2). [Colin Barker, Feb 17 2012]