A105410 Numbers k such that prime(k)-2 and prime(k+3)-2 are both primes.
3, 8, 11, 18, 50, 58, 114, 174, 207, 210, 213, 254, 263, 266, 316, 321, 344, 396, 406, 461, 493, 496, 499, 543, 556, 582, 614, 626, 644, 724, 727, 741, 847, 932, 1099, 1102, 1118, 1121, 1233, 1236, 1261, 1285, 1443, 1616, 1619, 1640, 1705, 1710, 1783, 1792
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[2000],PrimeQ[Prime[#]-2]&&PrimeQ[Prime[#+3]-2]&] (* Harvey P. Dale, Jun 02 2011 *)
-
PARI
pnpk(n, m=3, k=2) = { local(x, v1, v2); for(x=1, n, v1 = prime(x)-k; v2 = prime(x+m)-k; if(isprime(v1)&isprime(v2), print1(x, ", ") ) ) ; } \\ corrected by Amiram Eldar, Oct 04 2024
-
PARI
lista(pmax) = {my(k = 1, p = primes(5)); forprime(p1 = p[#p], pmax, k++; p[#p] = p1; if(p[2]- p[1] == 2 && p[5] - p[4] == 2, print1(k, ", ")); for(i = 1, #p-1, p[i] = p[i+1]));} \\ Amiram Eldar, Oct 04 2024
Extensions
Offset corrected by Amiram Eldar, Oct 04 2024