A105414 Primes p = prime(k) such that p+2 and prime(k+7)-2 are both prime numbers.
17, 71, 149, 191, 431, 521, 821, 1049, 1277, 1289, 1451, 1619, 1667, 1877, 1949, 2027, 2657, 3299, 3329, 3467, 3527, 3539, 3767, 3929, 4271, 4931, 5477, 5849, 6131, 6659, 6701, 6779, 6827, 8537, 8819, 8999, 9419, 9719, 9929, 10037, 10091, 11069, 11117
Offset: 1
Keywords
Examples
p(8)-2 = 17, p(8+6)-2 = 41, both prime, 17 is in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
Programs
-
Mathematica
For[n = 1, n < 500, n++, If[PrimeQ[Prime[n] + 2], If[PrimeQ[Prime[n + 7] - 2], Print[Prime[n]]]]] (* Stefan Steinerberger, Feb 07 2006 *) Select[Prime[Range[1500]],AllTrue[{#+2,Prime[PrimePi[#]+7]-2},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 05 2019 *)
-
PARI
pnpk(n, m=7, k=2) = { local(x, v1, v2); for(x=1, n, v1 = prime(x)+k; v2 = prime(x+m)-k; if(isprime(v1)&isprime(v2), print1(v1-k, ", ") ) ) ; } \\ corrected by Amiram Eldar, Oct 04 2024
-
PARI
lista(pmax) = {my(k = 1, p = primes(8)); forprime(p1 = p[#p], pmax, k++; p[#p] = p1; if(p[2]- p[1] == 2 && p[8] - p[7] == 2, print1(p[1], ", ")); for(i = 1, #p-1, p[i] = p[i+1]));} \\ Amiram Eldar, Oct 04 2024
Comments