cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105414 Primes p = prime(k) such that p+2 and prime(k+7)-2 are both prime numbers.

Original entry on oeis.org

17, 71, 149, 191, 431, 521, 821, 1049, 1277, 1289, 1451, 1619, 1667, 1877, 1949, 2027, 2657, 3299, 3329, 3467, 3527, 3539, 3767, 3929, 4271, 4931, 5477, 5849, 6131, 6659, 6701, 6779, 6827, 8537, 8819, 8999, 9419, 9719, 9929, 10037, 10091, 11069, 11117
Offset: 1

Views

Author

Cino Hilliard, May 02 2005

Keywords

Comments

Conjecture: There are infinitely many primes p(k) such that p(k)-2 and p(k+m)-2 are both primes for all m > 1.

Examples

			p(8)-2 = 17, p(8+6)-2 = 41, both prime, 17 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    For[n = 1, n < 500, n++, If[PrimeQ[Prime[n] + 2], If[PrimeQ[Prime[n + 7] - 2], Print[Prime[n]]]]] (* Stefan Steinerberger, Feb 07 2006 *)
    Select[Prime[Range[1500]],AllTrue[{#+2,Prime[PrimePi[#]+7]-2},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 05 2019 *)
  • PARI
    pnpk(n, m=7, k=2) = { local(x, v1, v2); for(x=1, n, v1 = prime(x)+k; v2 = prime(x+m)-k; if(isprime(v1)&isprime(v2), print1(v1-k, ", ") ) ) ; } \\ corrected by Amiram Eldar, Oct 04 2024
    
  • PARI
    lista(pmax) = {my(k = 1, p = primes(8)); forprime(p1 = p[#p], pmax, k++; p[#p] = p1; if(p[2]- p[1] == 2 && p[8] - p[7] == 2, print1(p[1], ", ")); for(i = 1, #p-1, p[i] = p[i+1]));} \\ Amiram Eldar, Oct 04 2024