A105441 Numbers with at least two odd prime factors (not necessarily distinct).
9, 15, 18, 21, 25, 27, 30, 33, 35, 36, 39, 42, 45, 49, 50, 51, 54, 55, 57, 60, 63, 65, 66, 69, 70, 72, 75, 77, 78, 81, 84, 85, 87, 90, 91, 93, 95, 98, 99, 100, 102, 105, 108, 110, 111, 114, 115, 117, 119, 120, 121, 123, 125, 126, 129, 130, 132, 133, 135, 138, 140, 141
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a105441 n = a105441_list !! (n-1) a105441_list = filter ((> 2) . a001227) [1..] -- Reinhard Zumkeller, May 01 2012
-
Mathematica
opf3Q[n_]:=Count[Flatten[Table[First[#],{Last[#]}]&/@FactorInteger[n]], ?OddQ]>1 (* _Harvey P. Dale, Jun 13 2011 *)
-
PARI
upTo(lim)=my(v=List(),p=7,m);forprime(q=8,lim,forstep(n=p+2,q-2,2,m=n;while(m<=lim,listput(v,m);m<<=1));p=q);forstep(n=p+2,lim,2,listput(v,n));vecsort(Vec(v)) \\ Charles R Greathouse IV, Aug 08 2011
-
PARI
is(n)=n>>=valuation(n,2); !isprime(n) && n>1 \\ Charles R Greathouse IV, Apr 30 2013
-
Python
from sympy import primepi def A105441(n): def f(x): return int(n+1+sum(primepi(x>>i) for i in range(x.bit_length()))) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Feb 02 2025
Formula
A087436(a(n)) > 1.
A001227(a(n)) > 2. [Reinhard Zumkeller, May 01 2012]
Comments