cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105455 Numbers k such that k*prime(k)+(k+1)*prime(k+1)+(k+2)*prime(k+2) is prime.

Original entry on oeis.org

1, 6, 12, 20, 22, 24, 28, 30, 34, 56, 60, 142, 144, 148, 168, 192, 196, 230, 252, 260, 276, 282, 304, 322, 334, 344, 346, 352, 366, 374, 380, 386, 394, 404, 418, 424, 432, 440, 444, 470, 478, 484, 572, 590, 610, 612, 630, 642, 662, 684, 754, 766, 784, 790, 840, 842, 874, 886
Offset: 1

Views

Author

Zak Seidov, May 02 2005

Keywords

Examples

			k=1: 1*prime(1) + 2*prime(2) + 3*prime(3) = 1*2 + 2*3 + 3*5 = 23 prime,
k=6: 6*prime(6) + 7*prime(7) + 8*prime(8) = 6*13 + 7*17 + 8*19 = 349 prime. - _Zak Seidov_, Feb 18 2016
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000] | IsPrime(n*NthPrime(n)+(n+1)*NthPrime(n+1)+(n+2)*NthPrime(n+2))]; // Vincenzo Librandi, Feb 06 2016
    
  • Mathematica
    bb={};Do[If[PrimeQ[n Prime[n]+(n+1) Prime[n+1]+(n+2) Prime[n+2]], bb=Append[bb, n]], {n, 1, 400}];bb
    Select[Range@ 900, PrimeQ[# Prime[#] + (# + 1) Prime[# + 1] + (# + 2) Prime[# + 2]] &] (* Michael De Vlieger, Feb 05 2016 *)
  • PARI
    lista(nn) = {for(n=1, nn, if(ispseudoprime(n*prime(n)+(n+1)*prime(n+1)+(n+2)*prime(n+2)), print1(n, ", "))); } \\ Altug Alkan, Feb 05 2016
    
  • Python
    from itertools import islice
    from sympy import isprime, nextprime
    def agen(): # generator of terms
        m, p, q, r = 1, 2, 3, 5
        while True:
            t = m*p + (m+1)*q + (m+2)*r
            if isprime(t): yield m
            m, p, q, r = m+1, q, r, nextprime(r)
    print(list(islice(agen(), 58))) # Michael S. Branicky, May 17 2022