A105488 Number of partitions of {1...n} containing 2 detached pairs of consecutive integers, i.e., partitions in which only 1- or 2-strings of consecutive integers can appear in a block and there are exactly two 2-strings.
1, 6, 30, 150, 780, 4263, 24556, 149040, 951615, 6378625, 44785620, 328660566, 2515643767, 20044428810, 165955025400, 1425299331992, 12678325080012, 116635133853189, 1108221018960830, 10862073229428120, 109694927532209481, 1140199081827172719
Offset: 4
Examples
a(5)=6 because the partitions of {1,2,3,4,5} with 2 detached pairs of consecutive integers are 145/23,125/34,1245/3,12/34/5,12/3/45,1/23/45.
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..577
- A. O. Munagi, Set Partitions with Successions and Separations, IJMMS 2005:3 (2005), 451-463.
- W. Rand, Objective criteria for the evaluation of clustering methods, J. Amer. Stat. Assoc., 66 (336): 846-850, 1971.
Programs
-
Maple
seq(binomial(n-2,2)*combinat[bell](n-3),n=4..28);
-
Mathematica
a[n_] := Binomial[n-2, 2]*BellB[n-3]; Table[a[n], {n, 4, 25}] (* Jean-François Alcover, May 11 2019 *)
Formula
a(n) = binomial(n-2, 2)*Bell(n-3), which is the case r = 2 in the general case of r pairs, d(n, r)=binomial(n-r, r)*Bell(n-r-1), which is the case t=2 of the general formula d(n, r, t)=binomial(n-r*(t-1), r)*B(n-r*(t-1)-1).
Comments