A105509 Numbers m such that 9 is the leading digit of the m-th Fibonacci number in decimal representation.
16, 35, 59, 83, 102, 126, 150, 169, 193, 212, 236, 260, 279, 303, 327, 346, 370, 394, 413, 437, 461, 480, 504, 528, 547, 571, 595, 614, 638, 657, 681, 705, 724, 748, 772, 791, 815, 839, 858, 882, 906, 925, 949, 973, 992, 1016, 1040, 1059, 1083, 1102, 1107
Offset: 1
Examples
a(10)=21: A008963(212) = A000030(A000045(212)) = A000030(90343046356137747723758225621187571439538669) = 9.
Links
- M. Bicknell-Johnson, A generalized magic trick from Fibonacci: Designer decimals, College Mathematics Journal 35(March):125-126, 2004.
- O-Y. Chan and J. Smoak, More designer decimals: The integers and their geometric extensions College Mathematics Journal 37(November):355-363, 2006.
- Ivars Peterson, Designer Decimals, Science News, Week of Nov 04 2006; Vol. 170, No. 19.
- J. Smoak, and T.J. Osler, A magic trick from Fibonacci. College Mathematics Journal, 34 (2003):58-60.
Crossrefs
Programs
-
Mathematica
Select[Range@ 1200, First@ IntegerDigits@ Fibonacci@ # == 9 &] (* Michael De Vlieger, Aug 21 2016 *)
-
PARI
is(n)=digits(fibonacci(n))[1]==9 \\ Charles R Greathouse IV, Oct 07 2016
Formula
m such that d(m+5)-d(m) = 2 for d(m) = floor(1 + log_10(F(m))) and F(m) = m-th Fibonacci number = A000045(m). - Jonathan Vos Post, Dec 23 2006
a(n) ~ k*n by the equidistribution theorem, where k = 1/(1 - log(9)/log(10)) = 21.8543.... - Charles R Greathouse IV, Oct 07 2016
Comments