A105551 Number of distinct prime factors of n^3 + n^2 + 71.
1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 1, 1, 1, 3, 2, 2, 2, 2, 1, 3, 3, 2, 1, 2, 1, 1, 3, 2, 3, 1, 2, 1, 1, 3, 2, 1, 2, 3, 2, 2, 2, 1, 3, 1, 1, 3, 2, 1, 2
Offset: 0
Examples
a(0) = 1 because 0^3 + 0^2 + 71 = 71 is prime. a(1) = 1 because 1^3 + 1^2 + 71 = 73 is prime. a(2) = 1 because 2^3 + 2^2 + 71 = 83 is prime. a(3) = 1 because 3^3 + 3^2 + 71 = 107 is prime. a(4) = 1 because 3^3 + 3^2 + 71 = 151 is prime. a(5) = 2 because 3^3 + 3^2 + 71 = 221 = 13 * 17 is the first semiprime. a(44) = 3 because 44^3 + 44^2 + 71 = 87191 = 13 * 19 * 353 is the first 3-almost prime for nonnegative integers n.
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Ulrich Abel and Hartmut Siebert, Sequences with Large Numbers of Prime Values, Am. Math. Monthly 100, 167-169, 1993.
- Robin Forman, Sequences with Many Primes, Amer. Math. Monthly 99, 548-557, 1992.
- Betty Garrison, Polynomials with Large Numbers of Prime Values, Amer. Math. Monthly 97, 316-317, 1990.
- Eric Weisstein's World of Mathematics, Prime-Generating Polynomial.
Crossrefs
Programs
-
Mathematica
Table[PrimeNu[n^3+n^2+71],{n,0,90}] (* Harvey P. Dale, Oct 09 2012 *)
-
PARI
a(n)=omega(n^3 + n^2 + 71) \\ Charles R Greathouse IV, Jan 31 2017
Formula
a(n) = A001221(n^3 + n^2 + 71).
Extensions
More terms from Robert G. Wilson v, May 21 2005
Comments