A105560 a(1) = 1, and for n >= 2, a(n) = prime(bigomega(n)), where prime(n) = A000040(n) and bigomega(n) = A001222(n).
1, 2, 2, 3, 2, 3, 2, 5, 3, 3, 2, 5, 2, 3, 3, 7, 2, 5, 2, 5, 3, 3, 2, 7, 3, 3, 5, 5, 2, 5, 2, 11, 3, 3, 3, 7, 2, 3, 3, 7, 2, 5, 2, 5, 5, 3, 2, 11, 3, 5, 3, 5, 2, 7, 3, 7, 3, 3, 2, 7, 2, 3, 5, 13, 3, 5, 2, 5, 3, 5, 2, 11, 2, 3, 5, 5, 3, 5, 2, 11, 7, 3, 2, 7, 3, 3, 3, 7, 2, 7, 3, 5, 3, 3, 3, 13, 2, 5, 5, 7
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Table[Prime[Sum[FactorInteger[n][[i,2]],{i,1,Length[FactorInteger[n]]}]],{n,2,40}] (* Stefan Steinerberger, May 16 2007 *)
-
PARI
d(n) = for(x=2,n,print1(prime(bigomega(x))","))
-
Python
from sympy import prime, primefactors def a001222(n): return 0 if n==1 else a001222(n/primefactors(n)[0]) + 1 def a(n): return 1 if n==1 else prime(a001222(n)) # Indranil Ghosh, Jun 15 2017
Formula
Extensions
a(1) = 1 prepended by Antti Karttunen, Jul 21 2014
Comments