A105623
Matrix square-root of triangle A105615.
Original entry on oeis.org
1, 1, 1, 4, 2, 1, 26, 10, 3, 1, 226, 74, 19, 4, 1, 2426, 706, 167, 31, 5, 1, 30826, 8162, 1831, 320, 46, 6, 1, 451586, 110410, 23843, 4021, 548, 64, 7, 1, 7489426, 1708394, 358339, 59024, 7801, 866, 85, 8, 1, 138722426, 29752066, 6097607, 987763, 127985
Offset: 0
Triangle begins:
1;
1,1;
4,2,1;
26,10,3,1;
226,74,19,4,1;
2426,706,167,31,5,1;
30826,8162,1831,320,46,6,1;
451586,110410,23843,4021,548,64,7,1;
7489426,1708394,358339,59024,7801,866,85,8,1;
138722426,29752066,6097607,987763,127985,13801,1289,109,9,1; ...
-
T(n,k)=local(R,M=matrix(n+1,n+1,m,j,if(m>=j,if(m==j,1,if(m==j+1,-2*j, polcoeff(1/sum(i=0,m-j,(2*i)!/i!/2^i*x^i)+O(x^m),m-j)))))^-1); R=(M+M^0)/2;for(i=1,floor(2*log(n+2)),R=(R+M*R^(-1))/2); return(if(n
A105620
Matrix inverse square-root of triangle A105615.
Original entry on oeis.org
1, -1, 1, -2, -2, 1, -10, -4, -3, 1, -74, -20, -7, -4, 1, -706, -148, -39, -11, -5, 1, -8162, -1412, -315, -70, -16, -6, 1, -110410, -16324, -3243, -635, -116, -22, -7, 1, -1708394, -220820, -40167, -7264, -1183, -180, -29, -8, 1, -29752066, -3416788, -579159, -99191, -15065, -2049, -265, -37, -9, 1
Offset: 0
Triangle begins:
1;
-1,1;
-2,-2,1;
-10,-4,-3,1;
-74,-20,-7,-4,1;
-706,-148,-39,-11,-5,1;
-8162,-1412,-315,-70,-16,-6,1;
-110410,-16324,-3243,-635,-116,-22,-7,1;
-1708394,-220820,-40167,-7264,-1183,-180,-29,-8,1;
-29752066,-3416788,-579159,-99191,-15065,-2049,-265,-37,-9,1; ...
-
T(n,k)=local(R,M=matrix(n+1,n+1,m,j,if(m>=j,if(m==j,1,if(m==j+1,-2*j, polcoeff(1/sum(i=0,m-j,(2*i)!/i!/2^i*x^i)+O(x^m),m-j)))))); R=(M+M^0)/2;for(i=1,floor(2*log(n+2)),R=(R+M*R^(-1))/2); return(if(n
Original entry on oeis.org
1, 4, 26, 226, 2426, 30826, 451586, 7489426, 138722426, 2839238026, 63654973826, 1551919194226, 40888965122426, 1157981114051626, 35083865696279426, 1132449247218851026, 38800104353355372026, 1406432065083818193226
Offset: 0
-
{a(n)=if(n<0,0,(matrix(n+2,n+2,m,j,if(m>=j,if(m==j,1,if(m==j+1,-2*j, polcoeff(1/sum(i=0,m-j,(2*i)!/i!/2^i*x^i)+O(x^m),m-j) ))))^-1)[n+2,2])}
Original entry on oeis.org
1, 6, 50, 522, 6498, 93666, 1532970, 28079082, 569212578, 12655466946, 306280630890, 8017054975242, 225716319717858, 6802519195684386, 218521006115328810, 7454198349649868202, 269114811307118424738
Offset: 0
-
{a(n)=if(n<0,0,(matrix(n+3,n+3,m,j,if(m>=j,if(m==j,1,if(m==j+1,-2*j, polcoeff(1/sum(i=0,m-j,(2*i)!/i!/2^i*x^i)+O(x^m),m-j) ))))^-1)[n+3,3])}
A105619
Matrix inverse of triangle A105615.
Original entry on oeis.org
1, -2, 1, -2, -4, 1, -10, -2, -6, 1, -74, -10, -2, -8, 1, -706, -74, -10, -2, -10, 1, -8162, -706, -74, -10, -2, -12, 1, -110410, -8162, -706, -74, -10, -2, -14, 1, -1708394, -110410, -8162, -706, -74, -10, -2, -16, 1, -29752066, -1708394, -110410, -8162, -706, -74, -10, -2, -18, 1
Offset: 0
Triangle begins:
1;
-2,1;
-2,-4,1;
-10,-2,-6,1;
-74,-10,-2,-8,1;
-706,-74,-10,-2,-10,1;
-8162,-706,-74,-10,-2,-12,1;
-110410,-8162,-706,-74,-10,-2,-14,1;
-1708394,-110410,-8162,-706,-74,-10,-2,-16,1; ...
-
T(n,k)=if(n=j,if(m==j,1,if(m==j+1,-2*j, polcoeff(1/sum(i=0,m-j,(2*i)!/i!/2^i*x^i)+O(x^m),m-j)))))[n+1,k+1])
A105626
Triangular matrix T, read by rows, that satisfies T^2 = A105615^3; also equals the matrix cube of triangle A105623.
Original entry on oeis.org
1, 3, 1, 18, 6, 1, 150, 48, 9, 1, 1566, 480, 93, 12, 1, 19494, 5736, 1125, 153, 15, 1, 280998, 79584, 15681, 2190, 228, 18, 1, 4598910, 1256808, 247929, 35181, 3780, 318, 21, 1, 84237246, 22262640, 4389213, 629424, 68961, 6000, 423, 24, 1, 1707637734
Offset: 0
Triangle begins:
1;
3,1;
18,6,1;
150,48,9,1;
1566,480,93,12,1;
19494,5736,1125,153,15,1;
280998,79584,15681,2190,228,18,1;
4598910,1256808,247929,35181,3780,318,21,1;
84237246,22262640,4389213,629424,68961,6000,423,24,1; ...
-
T(n,k)=local(R,M=matrix(n+1,n+1,m,j,if(m>=j,if(m==j,1,if(m==j+1,-2*j, polcoeff(1/sum(i=0,m-j,(2*i)!/i!/2^i*x^i)+O(x^m),m-j)))))^-3); R=(M+M^0)/2;for(i=1,floor(2*log(n+2)),R=(R+M*R^(-1))/2); return(if(n
Original entry on oeis.org
1, 3, 15, 107, 991, 11203, 148879, 2270027, 39041151, 747704963, 15784630159, 364256650027, 9124264794271, 246600188525123, 7153677209063439, 221729176945261067, 7313478624348963391, 255786689421734222083
Offset: 0
-
{a(n)=if(n<0,0,sum(k=0,n,(matrix(n+1,n+1,m,j,if(m>=j,if(m==j,1,if(m==j+1,-2*j, polcoeff(1/sum(i=0,m-j,(2*i)!/i!/2^i*x^i)+O(x^m),m-j)))))^-1)[n+1,k+1]))}
A107717
Triangular matrix T, read by rows, that satisfies: SHIFT_LEFT(column 0 of T^((3*p-1)/3)) = (3*p-1)*(column p of T), or [T^((3*p-1)/3)](m,0) = (3*p-1)*T(p+m,p) for all m>=1 and p>=0.
Original entry on oeis.org
1, 3, 1, 21, 6, 1, 219, 57, 9, 1, 2973, 723, 111, 12, 1, 49323, 11361, 1713, 183, 15, 1, 964173, 212151, 31575, 3351, 273, 18, 1, 21680571, 4584081, 675489, 71391, 5799, 381, 21, 1, 551173053, 112480887, 16442823, 1732881, 140529, 9219, 507, 24, 1
Offset: 0
SHIFT_LEFT(column 0 of T^(p-1/3)) = (3*p-1)*(column p of T):
SHIFT_LEFT(column 0 of T^(-1/3)) = -1*(column 0 of T);
SHIFT_LEFT(column 0 of T^(2/3)) = 2*(column 1 of T);
SHIFT_LEFT(column 0 of T^(5/3)) = 5*(column 2 of T).
Triangle begins:
1;
3,1;
21,6,1;
219,57,9,1;
2973,723,111,12,1;
49323,11361,1713,183,15,1;
964173,212151,31575,3351,273,18,1;
21680571,4584081,675489,71391,5799,381,21,1; ...
Matrix power (2/3), T^(2/3), is A107719 and begins:
1;
2,1;
12,4,1;
114,32,6,1;
1446,364,62,8,1;
22722,5276,854,102,10,1; ...
compare column 0 of T^(2/3) to 2*(column 1 of T).
Matrix inverse cube-root T^(-1/3) is A107727 and begins:
1;
-1,1;
-3,-2,1;
-21,-7,-3,1;
-219,-53,-13,-4,1;
-2973,-583,-115,-21,-5,1; ...
compare column 0 of T^(-1/3) to column 0 of T.
Matrix inverse is A107726 and begins:
1;
-3,1;
-3,-6,1;
-21,-3,-9,1;
-219,-21,-3,-12,1;
-2973,-219,-21,-3,-15,1; ...
compare column 0 of T^(-1) to column 0 of T.
-
{T(n,k)=if(n
-
{T(n,k)=if(n=j,if(m==j,1,if(m==j+1,-3*j,-T(m-j-1,0)))))^-1)[n+1,k+1])}
for(n=0,10,for(k=0,n,print1(T(n,k),", ")); print(""))
A105629
Triangular matrix, read by rows, equal to the matrix logarithm of triangle A105623.
Original entry on oeis.org
0, 1, 0, 3, 2, 0, 17, 7, 3, 0, 135, 43, 13, 4, 0, 1353, 361, 93, 21, 5, 0, 16251, 3779, 883, 175, 31, 6, 0, 226857, 47077, 10277, 1893, 297, 43, 7, 0, 3605775, 678443, 140743, 24735, 3631, 467, 57, 8, 0, 64288209, 11095201, 2211413, 376209, 52961, 6385, 693
Offset: 0
Triangle begins:
0;
1,0;
3,2,0;
17,7,3,0;
135,43,13,4,0;
1353,361,93,21,5,0;
16251,3779,883,175,31,6,0;
226857,47077,10277,1893,297,43,7,0;
3605775,678443,140743,24735,3631,467,57,8,0;
64288209,11095201,2211413,376209,52961,6385,693,73,9,0; ...
-
T(n,k)=local(L,M=matrix(n+1,n+1,m,j,if(m>=j,if(m==j,1,if(m==j+1,-2*j, polcoeff(1/sum(i=0,m-j,(2*i)!/i!/2^i*x^i)+O(x^m),m-j)))))^-1); L=sum(i=1,#M,(-1)^(i-1)*(M-M^0)^i/i); return(if(n
Original entry on oeis.org
1, 6, 48, 480, 5736, 79584, 1256808, 22262640, 437315016, 9438589824, 222109617288, 5661445534800, 155427839133096, 4573268363775264, 143592923776842408, 4792636497324986160, 169456698405536983176
Offset: 0
-
{a(n)=local(R,M=matrix(n+2,n+2,m,j,if(m>=j,if(m==j,1,if(m==j+1,-2*j, polcoeff(1/sum(i=0,m-j,(2*i)!/i!/2^i*x^i)+O(x^m),m-j)))))^-3); R=(M+M^0)/2;for(i=1,floor(2*log(n+2)),R=(R+M*R^(-1))/2); return(if(n<0,0,R[n+2,2]))}
Showing 1-10 of 17 results.
Comments