cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A105615 Triangular matrix T, read by rows, that satisfies: SHIFT_LEFT(column 0 of T^((2*p-1)/2)) = (2*p-1)*(column p of T), or [T^((2*p-1)/2)](m,0) = (2*p-1)*T(p+m,p+1) for all m>=1 and p>=0.

Original entry on oeis.org

1, 2, 1, 10, 4, 1, 74, 26, 6, 1, 706, 226, 50, 8, 1, 8162, 2426, 522, 82, 10, 1, 110410, 30826, 6498, 1010, 122, 12, 1, 1708394, 451586, 93666, 14458, 1738, 170, 14, 1, 29752066, 7489426, 1532970, 235466, 28226, 2754, 226, 16, 1, 576037442
Offset: 0

Views

Author

Paul D. Hanna, Apr 16 2005

Keywords

Comments

Column 0 is A000698 (related to double factorials), offset 1. Column 1 is A105616 (column 0 of T^(1/2), offset 1). The matrix logarithm divided by 2 yields the integer triangle A105629.
Compare with triangular matrix A107717, which satisfies: SHIFT_LEFT(column 0 of A107717^((3*k-1)/3)) = (3*k-1)*(column k of A107717).

Examples

			SHIFT_LEFT(column 0 of T^(-1/2)) = -1*(column 0 of T);
SHIFT_LEFT(column 0 of T^(1/2)) = 1*(column 1 of T);
SHIFT_LEFT(column 0 of T^(3/2)) = 3*(column 2 of T);
SHIFT_LEFT(column 0 of T^(5/2)) = 5*(column 3 of T).
Triangle begins:
1;
2,1;
10,4,1;
74,26,6,1;
706,226,50,8,1;
8162,2426,522,82,10,1;
110410,30826,6498,1010,122,12,1;
1708394,451586,93666,14458,1738,170,14,1;
29752066,7489426,1532970,235466,28226,2754,226,16,1; ...
Matrix square-root T^(1/2) is A105623 which begins:
1;
1,1;
4,2,1;
26,10,3,1;
226,74,19,4,1;
2426,706,167,31,5,1; ...
compare column 0 of T^(1/2) to column 1 of T;
also, column 1 of T^(1/2) equals column 0 of T.
Matrix inverse square-root T^(-1/2) is A105620 which begins:
1;
-1,1;
-2,-2,1;
-10,-4,-3,1;
-74,-20,-7,-4,1;
-706,-148,-39,-11,-5,1; ...
compare column 0 of T^(-1/2) to column 0 of T.
Matrix inverse T^-1 is A105619 which begins:
1;
-2,1;
-2,-4,1;
-10,-2,-6,1;
-74,-10,-2,-8,1;
-706,-74,-10,-2,-10,1;
-8162,-706,-74,-10,-2,-12,1; ...
		

Crossrefs

Cf. A000698 (column 0), A105616 (column 1), A105617 (column 2), A105618 (row sums), A105619 (T^-1), A105620 (T^(-1/2)), A105623 (T^(1/2)), A105627 (T^(3/2)), A105629 (matrix log).
Cf. A107717.

Programs

  • PARI
    {T(n,k) = if(n
    				
  • PARI
    {T(n,k) = if(n=j,if(m==j,1,if(m==j+1,-2*j, polcoeff(1/sum(i=0,m-j,(2*i)!/i!/2^i*x^i)+O(x^m),m-j)))))^-1)[n+1,k+1])}
    for(n=0,10,for(k=0,n,print1(T(n,k),", ")); print(""))

Formula

T(n, k) = 2*(k+1)*T(n, k+1) + Sum_{j=1..n-k-1} T(j, 0)*T(n, j+k+1) for n>k>=0, with T(n, n) = 1 for n>=0. T(n, 0) = A000698(n+1) for n>=0.

A105620 Matrix inverse square-root of triangle A105615.

Original entry on oeis.org

1, -1, 1, -2, -2, 1, -10, -4, -3, 1, -74, -20, -7, -4, 1, -706, -148, -39, -11, -5, 1, -8162, -1412, -315, -70, -16, -6, 1, -110410, -16324, -3243, -635, -116, -22, -7, 1, -1708394, -220820, -40167, -7264, -1183, -180, -29, -8, 1, -29752066, -3416788, -579159, -99191, -15065, -2049, -265, -37, -9, 1
Offset: 0

Views

Author

Paul D. Hanna, Apr 16 2005

Keywords

Comments

Column 0 is negative A000698 (related to double factorials). Column 1 equals twice column 0 after the initial term.

Examples

			Triangle begins:
1;
-1,1;
-2,-2,1;
-10,-4,-3,1;
-74,-20,-7,-4,1;
-706,-148,-39,-11,-5,1;
-8162,-1412,-315,-70,-16,-6,1;
-110410,-16324,-3243,-635,-116,-22,-7,1;
-1708394,-220820,-40167,-7264,-1183,-180,-29,-8,1;
-29752066,-3416788,-579159,-99191,-15065,-2049,-265,-37,-9,1; ...
		

Crossrefs

Cf. A105615, A105619 (matrix square), A105623 (matrix inverse), A000698 (column 0), A105621 (column 2), A105622 (row sums).

Programs

  • PARI
    T(n,k)=local(R,M=matrix(n+1,n+1,m,j,if(m>=j,if(m==j,1,if(m==j+1,-2*j, polcoeff(1/sum(i=0,m-j,(2*i)!/i!/2^i*x^i)+O(x^m),m-j)))))); R=(M+M^0)/2;for(i=1,floor(2*log(n+2)),R=(R+M*R^(-1))/2); return(if(n
    				
Showing 1-2 of 2 results.