A105619 Matrix inverse of triangle A105615.
1, -2, 1, -2, -4, 1, -10, -2, -6, 1, -74, -10, -2, -8, 1, -706, -74, -10, -2, -10, 1, -8162, -706, -74, -10, -2, -12, 1, -110410, -8162, -706, -74, -10, -2, -14, 1, -1708394, -110410, -8162, -706, -74, -10, -2, -16, 1, -29752066, -1708394, -110410, -8162, -706, -74, -10, -2, -18, 1
Offset: 0
Examples
Triangle begins: 1; -2,1; -2,-4,1; -10,-2,-6,1; -74,-10,-2,-8,1; -706,-74,-10,-2,-10,1; -8162,-706,-74,-10,-2,-12,1; -110410,-8162,-706,-74,-10,-2,-14,1; -1708394,-110410,-8162,-706,-74,-10,-2,-16,1; ...
Programs
-
PARI
T(n,k)=if(n
=j,if(m==j,1,if(m==j+1,-2*j, polcoeff(1/sum(i=0,m-j,(2*i)!/i!/2^i*x^i)+O(x^m),m-j)))))[n+1,k+1])
Comments