A105632 Triangle, read by rows, where the g.f. A(x,y) satisfies the equation: A(x,y) = 1/(1-x*y) + x*A(x,y) + x^2*A(x,y)^2.
1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 7, 4, 1, 1, 21, 19, 10, 5, 1, 1, 51, 51, 31, 13, 6, 1, 1, 127, 141, 91, 45, 16, 7, 1, 1, 323, 393, 276, 141, 61, 19, 8, 1, 1, 835, 1107, 834, 461, 201, 79, 22, 9, 1, 1, 2188, 3139, 2535, 1485, 701, 271, 99, 25, 10, 1, 1, 5798, 8953, 7711, 4803, 2381, 1001, 351, 121, 28, 11, 1, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 2, 1, 1; 4, 3, 1, 1; 9, 7, 4, 1, 1; 21, 19, 10, 5, 1, 1; 51, 51, 31, 13, 6, 1, 1; 127, 141, 91, 45, 16, 7, 1, 1; 323, 393, 276, 141, 61, 19, 8, 1, 1; 835, 1107, 834, 461, 201, 79, 22, 9, 1, 1; ... Let G = (1-2*x-3*x^2), then the column g.f.s are: k=1: 1/sqrt(G) k=2: (G + (1)*1*x^2)/sqrt(G^3) k=3: (G^2 + (1)*2*x^2*G + (2)*1*x^4)/sqrt(G^5) k=4: (G^3 + (1)*3*x^2*G^2 + (2)*3*x^4*G + (5)*1*x^6)/sqrt(G^7) k=5: (G^4 + (1)*4*x^2*G^3 + (2)*6*x^4*G^2 + (5)*4*x^6*G + (14)*1*x^8)/sqrt(G^9) and involve Catalan numbers and binomial coefficients. MATRIX INVERSE. The matrix inverse starts 1; -1, 1; -1, -1, 1; 0, -2, -1, 1; 2, -1, -3, -1, 1; 6, 2, -2, -4, -1, 1; 13, 10, 2, -3, -5, -1, 1; 18, 32, 14, 2, -4, -6, -1, 1; -12, 76, 56, 18, 2, -5, -7, -1, 1; -206, 108, 162, 86, 22, 2, -6, -8, -1, 1; - _R. J. Mathar_, Apr 08 2013
Programs
-
Maple
A105632 := proc(n,k) (1-x-sqrt((1-x)^2-4*x^2/(1-x*y)))/2/x^2 ; coeftayl(%,x=0,n) ; coeftayl(%,y=0,k) ; end proc: # R. J. Mathar, Apr 08 2013
-
Mathematica
T[n_, k_] := SeriesCoefficient[(1 - x - Sqrt[(1 - x)^2 - 4*x^2/(1 - x*y)])/(2*x^2), {x, 0, n}] // SeriesCoefficient[#, {y, 0, k}]&; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 10 2023 *)
-
PARI
{T(n,k)=local(A=1+x+x*y+x*O(x^n)+y*O(y^k)); for(i=1,n,A=1/(1-x*y)+x*A+x^2*A^2);polcoeff(polcoeff(A,n,x),k,y)}
-
PARI
{T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k));polcoeff(polcoeff( 2/(1-X+sqrt((1-X)^2-4*X^2/(1-X*Y)))/(1-X*Y),n,x),k,y)}
Comments