cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105632 Triangle, read by rows, where the g.f. A(x,y) satisfies the equation: A(x,y) = 1/(1-x*y) + x*A(x,y) + x^2*A(x,y)^2.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 7, 4, 1, 1, 21, 19, 10, 5, 1, 1, 51, 51, 31, 13, 6, 1, 1, 127, 141, 91, 45, 16, 7, 1, 1, 323, 393, 276, 141, 61, 19, 8, 1, 1, 835, 1107, 834, 461, 201, 79, 22, 9, 1, 1, 2188, 3139, 2535, 1485, 701, 271, 99, 25, 10, 1, 1, 5798, 8953, 7711, 4803, 2381, 1001, 351, 121, 28, 11, 1, 1
Offset: 0

Views

Author

Paul D. Hanna, Apr 17 2005

Keywords

Comments

Column 0 is A001006 (Motzkin numbers). Column 1 is A002426 (Central trinomial coefficients). Row sums form A105633 (also equal to A057580?).
T(n,k) is the number of UUDU-avoiding Dyck paths of semilength n+1 with k UDUs, where U = (1,1) is an upstep and D = (1,-1) is a downstep. For example, T(3,1) = 3 counts UDUUUDDD, UDUUDDUD, UUDDUDUD. - David Callan, Nov 25 2021

Examples

			Triangle begins:
    1;
    1,    1;
    2,    1,   1;
    4,    3,   1,   1;
    9,    7,   4,   1,   1;
   21,   19,  10,   5,   1,  1;
   51,   51,  31,  13,   6,  1,  1;
  127,  141,  91,  45,  16,  7,  1, 1;
  323,  393, 276, 141,  61, 19,  8, 1, 1;
  835, 1107, 834, 461, 201, 79, 22, 9, 1, 1; ...
Let G = (1-2*x-3*x^2), then the column g.f.s are:
k=1: 1/sqrt(G)
k=2: (G + (1)*1*x^2)/sqrt(G^3)
k=3: (G^2 + (1)*2*x^2*G + (2)*1*x^4)/sqrt(G^5)
k=4: (G^3 + (1)*3*x^2*G^2 + (2)*3*x^4*G + (5)*1*x^6)/sqrt(G^7)
k=5: (G^4 + (1)*4*x^2*G^3 + (2)*6*x^4*G^2 + (5)*4*x^6*G + (14)*1*x^8)/sqrt(G^9)
and involve Catalan numbers and binomial coefficients.
MATRIX INVERSE.
The matrix inverse starts
     1;
    -1,   1;
    -1,  -1,   1;
     0,  -2,  -1,  1;
     2,  -1,  -3, -1,  1;
     6,   2,  -2, -4, -1,  1;
    13,  10,   2, -3, -5, -1,  1;
    18,  32,  14,  2, -4, -6, -1,  1;
   -12,  76,  56, 18,  2, -5, -7, -1,  1;
  -206, 108, 162, 86, 22,  2, -6, -8, -1, 1;
- _R. J. Mathar_, Apr 08 2013
		

Crossrefs

Cf. A105633 (row sums), A001006 (column 0), A002426 (column 1).

Programs

  • Maple
    A105632 := proc(n,k)
        (1-x-sqrt((1-x)^2-4*x^2/(1-x*y)))/2/x^2 ;
        coeftayl(%,x=0,n) ;
        coeftayl(%,y=0,k) ;
    end proc: # R. J. Mathar, Apr 08 2013
  • Mathematica
    T[n_, k_] := SeriesCoefficient[(1 - x - Sqrt[(1 - x)^2 - 4*x^2/(1 - x*y)])/(2*x^2), {x, 0, n}] // SeriesCoefficient[#, {y, 0, k}]&;
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 10 2023 *)
  • PARI
    {T(n,k)=local(A=1+x+x*y+x*O(x^n)+y*O(y^k)); for(i=1,n,A=1/(1-x*y)+x*A+x^2*A^2);polcoeff(polcoeff(A,n,x),k,y)}
    
  • PARI
    {T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k));polcoeff(polcoeff( 2/(1-X+sqrt((1-X)^2-4*X^2/(1-X*Y)))/(1-X*Y),n,x),k,y)}

Formula

G.f. for column k (k>0): Sum_{j=0..k-1} C(k-1, j)*A000108(j)*x^(2*j)/(1-2*x-3*x^2)^(j+1/2), where A000108(j) = binomial(2*j, j)/(j+1) is the j-th Catalan number.
G.f.: A(x, y) = (1-x - sqrt((1-x)^2 - 4*x^2/(1-x*y)))/(2*x^2).