cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105673 One-half of theta series of square lattice (or half the number of ways of writing n > 0 as a sum of 2 squares), without the constant term, which is 1/2.

Original entry on oeis.org

2, 2, 0, 2, 4, 0, 0, 2, 2, 4, 0, 0, 4, 0, 0, 2, 4, 2, 0, 4, 0, 0, 0, 0, 6, 4, 0, 0, 4, 0, 0, 2, 0, 4, 0, 2, 4, 0, 0, 4, 4, 0, 0, 0, 4, 0, 0, 0, 2, 6, 0, 4, 4, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 2, 8, 0, 0, 4, 0, 0, 0, 2, 4, 4, 0, 0, 0, 0, 0, 4, 2, 4, 0, 0, 8, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 4, 2, 0
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2005

Keywords

Comments

This is the Jacobi elliptic function K(q)/Pi - 1/2 [see Fine].

Examples

			G.f. = 2*q + 2*q^2 + 2*q^4 + 4*q^5 + 2*q^8 + 2*q^9 + 4*q^10 + 4*q^13 + 2*q^16 + ...
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; Eq. (34.4).

Crossrefs

(Theta_3)^2 is given in A004018.
Equals A004018(n)/2 for n > 0.

Programs

  • Mathematica
    CoefficientList[Series[(EllipticTheta[3, 0, x]^2 - 1)/(2 x), {x, 0, 100}], x] (* Jan Mangaldan, Jan 04 2017 *)
    a[ n_] := If[ n < 1, 0, SquaresR[ 2, n] / 2]; (* Michael Somos, Jan 25 2017 *)
    a[ n_] := If[ n < 1, 0, 2 DivisorSum[ n, KroneckerSymbol[ -4, #] &]]; (* Michael Somos, Jan 25 2017 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^2 - 1) / 2, {q, 0, n}]; (* Michael Somos, Jan 25 2017 *)
  • PARI
    qfrep([1, 0; 0, 1], 100)
    
  • PARI
    {a(n) = if( n<1, 0, qfrep([1, 0; 0, 1], n)[n])}; /* Michael Somos, May 13 2005 */
    
  • PARI
    {a(n) = if( n<1, 0, 2 * sumdiv( n, d, (d%4==1) - (d%4==3)))}; /* Michael Somos, Jan 25 2017 */

Formula

G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u-v)^2 - (v-w) * (4*w + 2). - Michael Somos, May 13 2005
a(n) = 2 * A002654(n). - Michael Somos, Jan 25 2017