A105674 Highest minimal distance of any Type I (strictly) singly-even binary self-dual code of length 2n.
2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 8, 6, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10
Offset: 1
Examples
At length 8 the only strictly Type I self-dual code is {00,11}^4, which has d=2, so a(4) = 2.
References
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1977.
Links
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- P. Gaborit, Tables of Self-Dual Codes.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).
Comments