A066016
Highest minimal Hamming distance of any Type 4^Z self-dual code of length n over Z/4Z.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 3, 4, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 3, 4, 5, 6, 7, 8
Offset: 1
- S. T. Dougherty, M. Harada and P. Solé, Shadow Codes over Z_4, Finite Fields Applic., 7 (2001), 507-529.
- P. Gaborit, Tables of Self-Dual Codes
- W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Applic., 11 (2005), 451-490.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).
A105676
Highest minimal Hamming distance of any Type 3 ternary self-dual code of length 4n.
Original entry on oeis.org
3, 3, 6, 6, 6, 9, 9, 9, 12, 12, 12, 15, 15, 15, 18, 18
Offset: 1
The [12,6,6]_3 ternary Golay code has d=6, so a(3) = 6.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1977.
- P. Gaborit, Tables of Self-Dual Codes
- W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Applic., 11 (2005), 451-490.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).
The sequence continues: a(17) = either 15 or 18, a(18) = 18, ...
A105682
Highest minimal Euclidean norm of any Type 4^Z self-dual code of length n over Z/4Z.
Original entry on oeis.org
4, 4, 4, 4, 4, 4, 4, 8, 4, 4, 4, 8, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 12, 16
Offset: 1
- S. T. Dougherty, M. Harada and P. Solé, Shadow Codes over Z_4, Finite Fields Applic., 7 (2001), 507-529.
- P. Gaborit, Tables of Self-Dual Codes
- W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Applic., 11 (2005), 451-490.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).
A016729
Highest minimal Hamming distance of any Type 4^H+ Hermitian additive self-dual code over GF(4) of length n.
Original entry on oeis.org
1, 2, 2, 2, 3, 4, 3, 4, 4, 4, 5, 6, 5, 6, 6, 6, 7, 8, 7, 8, 8, 8
Offset: 1
- P. Gaborit and A. Otmani, Experimental construction of self-dual codes, Preprint.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- A. R. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4), arXiv:quant-ph/9608006, 1996-1997; IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.
- P. Gaborit, Tables of Self-Dual Codes
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).
A105687 gives the number of codes with this minimal distance.
A105675
Highest minimal distance of any Type II doubly-even binary self-dual code of length 8n.
Original entry on oeis.org
4, 4, 8, 8, 8, 12, 12, 12
Offset: 1
At length 8 the only Type II doubly-even self-dual code is the Hamming code e_8, which has d=4, so a(1) = 4. The [24,12,8] Golay code has d=8, so a(3) = 8.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1977.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- P. Gaborit, Tables of Self-Dual Codes
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).
- N. J. A. Sloane, Is There a (72,36) d = 16 Self-Dual Code?, IEEE Trans. Information Theory, vol. IT-19 (1973), p. 251.
A105677
Highest minimal Hamming distance of any Type 4^E Euclidean linear self-dual code over GF(4) of length 2n.
Original entry on oeis.org
2, 3, 3, 4, 4, 6, 6, 6
Offset: 1
- P. Gaborit and A. Otmani, Experimental construction of self-dual codes, Preprint.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- P. Gaborit, Tables of Self-Dual Codes
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).
A105678
Highest minimal Hamming distance of any Type 4^H Hermitian linear self-dual code over GF(4) of length 2n.
Original entry on oeis.org
2, 2, 4, 4, 4, 4, 6, 6, 8, 8, 8, 8, 8, 10, 12
Offset: 1
- P. Gaborit, Tables of Self-Dual Codes
- P. Gaborit and A. Otmani, Experimental construction of self-dual codes, Finite Fields and Their Applications, Volume 9, Issue 3, July 2003, Pages 372-394.
- W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Applic., 11 (2005), 451-490.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).
Cf. also
A105686 for the numbers of such codes.
A105681
Highest minimal Lee distance of any Type 4^Z self-dual code of length n over Z/4Z.
Original entry on oeis.org
2, 2, 2, 4, 2, 4, 4, 6, 2, 4, 4, 4, 4, 6, 6, 8, 6, 8, 6, 8, 8, 8, 10, 12
Offset: 1
- S. T. Dougherty, M. Harada and P. Solé, Shadow Codes over Z_4, Finite Fields Applic., 7 (2001), 507-529.
- P. Gaborit, Tables of Self-Dual Codes
- W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Applic., 11 (2005), 451-490.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).
A066012
Highest minimal Lee distance of any Type 4^Z self-dual code of length n over Z/4Z which does not have all Euclidean norms divisible by 8, that is, is strictly Type I. Compare A105681.
Original entry on oeis.org
2, 2, 2, 4, 2, 4, 4, 4, 2, 4, 4, 4, 4, 6, 6, 8, 6, 8, 6, 8, 8, 8, 10, 10
Offset: 1
- S. T. Dougherty, M. Harada and P. Solé, Shadow Codes over Z_4, Finite Fields Applic., 7 (2001), 507-529.
- P. Gaborit, Tables of Self-Dual Codes
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).
A066017
Number of inequivalent codes attaining highest minimal Hamming distance of any Type 4^Z self-dual code of length n over Z/4Z.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 11, 5, 3, 39, 8, 4, 47
Offset: 1
- S. T. Dougherty, M. Harada and P. Solé, Shadow Codes over Z_4, Finite Fields Applic., 7 (2001), 507-529.
- P. Gaborit, Tables of Self-Dual Codes
- W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Applic., 11 (2005), 451-490.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).
Showing 1-10 of 19 results.
Comments