cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105695 Expansion of (1-x)*c(x/(1+x)), where c(x) is the g.f. of the Catalan numbers (A000108).

Original entry on oeis.org

1, 0, 0, 1, 2, 5, 12, 30, 76, 196, 512, 1353, 3610, 9713, 26324, 71799, 196938, 542895, 1503312, 4179603, 11662902, 32652735, 91695540, 258215664, 728997192, 2062967382, 5850674704, 16626415975, 47337954326
Offset: 0

Views

Author

Paul Barry, Apr 17 2005

Keywords

Comments

Apply the Riordan array (1-x,x/(1+x)) to C(n)=A000108(n).
Alternatively, this sequence corresponds to the number of positive walks with n steps {-1,0,1} starting at the origin, ending at altitude 2, and staying strictly above the x-axis. - D. Nguyen, Dec 01 2016.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-x^2)*(1-Sqrt[(1-3*x)/(1+x)])/(2*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
  • PARI
    x='x+O('x^50); Vec((1-x^2)*(1-sqrt((1-3*x)/(1+x)))/(2*x)) \\ G. C. Greubel, Mar 16 2017

Formula

G.f.: (1-x^2)*(1-sqrt((1-3*x)/(1+x)))/(2*x).
Let b(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*C(k) = A005043(n); then a(n) = b(n) - b(n-2).
Conjecture: (n+1)*a(n)+(2-3n)*a(n-1) +(1-n)*a(n-2)+3*(n-4)*a(n-3)=0. - R. J. Mathar, Dec 13 2011
a(n) ~ 3^(n-1/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 01 2014
From Peter Bala, Oct 29 2015: (Start)
a(n) = Sum_{k = 1..floor((n-1)/2)} binomial(n-2,2*k-1)*Catalan(k) for n >= 1.
(n+1)*(n-3)*a(n) = (n-2)*(2*n-3)*a(n-1) + 3*(n-2)*(n-3)*a(n-2) with a(2) = 0, a(3) = 1. Mathar's 4-term recurrence above follows easily from this. (End)