A105695 Expansion of (1-x)*c(x/(1+x)), where c(x) is the g.f. of the Catalan numbers (A000108).
1, 0, 0, 1, 2, 5, 12, 30, 76, 196, 512, 1353, 3610, 9713, 26324, 71799, 196938, 542895, 1503312, 4179603, 11662902, 32652735, 91695540, 258215664, 728997192, 2062967382, 5850674704, 16626415975, 47337954326
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv:1609.06473 [math.CO], 2016.
Programs
-
Mathematica
CoefficientList[Series[(1-x^2)*(1-Sqrt[(1-3*x)/(1+x)])/(2*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
-
PARI
x='x+O('x^50); Vec((1-x^2)*(1-sqrt((1-3*x)/(1+x)))/(2*x)) \\ G. C. Greubel, Mar 16 2017
Formula
G.f.: (1-x^2)*(1-sqrt((1-3*x)/(1+x)))/(2*x).
Let b(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*C(k) = A005043(n); then a(n) = b(n) - b(n-2).
Conjecture: (n+1)*a(n)+(2-3n)*a(n-1) +(1-n)*a(n-2)+3*(n-4)*a(n-3)=0. - R. J. Mathar, Dec 13 2011
a(n) ~ 3^(n-1/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 01 2014
From Peter Bala, Oct 29 2015: (Start)
a(n) = Sum_{k = 1..floor((n-1)/2)} binomial(n-2,2*k-1)*Catalan(k) for n >= 1.
(n+1)*(n-3)*a(n) = (n-2)*(2*n-3)*a(n-1) + 3*(n-2)*(n-3)*a(n-2) with a(2) = 0, a(3) = 1. Mathar's 4-term recurrence above follows easily from this. (End)
Comments