A105747 Number of ways to use the elements of {1,..,k}, 0<=k<=2n, once each to form a collection of n (possibly empty) lists, each of length at most 2.
1, 4, 23, 216, 2937, 52108, 1136591, 29382320, 877838673, 29753600404, 1127881002535, 47278107653768, 2171286661012617, 108417864555606300, 5847857079417024031, 338841578119273846112
Offset: 0
Examples
a(2)=23: {(),()}, {(),(1)}, {(),(1,2)}, {(),(2,1)}, {(1),(2)}, {(1),(2,3)}, {(1),(3,2)}, ..., {(1,4),(2,3)}, {(1,4),(3,2)}, {(4,1),(2,3)}, {(4,1),(3,2)}.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..365
- R. A. Proctor, Let's Expand Rota's Twelvefold Way for Counting Partitions! arXiv math.CO.0606404.
- Index entries for related partition-counting sequences
Crossrefs
Programs
-
Mathematica
Table[Sum[(k+i)!/i!/(k-i)!, {k, 0, n}, {i, 0, k}], {n, 0, 20}]
Formula
a(n) = Sum_{0<=i<=k<=n} (k+i)!/i!/(k-i)!.
a(n+3) = (4*n+11)*a(n+2) - (4*n+9)*a(n+1) - a(n) - Benoit Cloitre, May 26 2006
G.f.: 1/(1-x)/Q(0), where Q(k)= 1 - x - 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
a(n) ~ 2^(2*n + 1/2) * n^n / exp(n - 1/2). - Vaclav Kotesovec, May 15 2022