cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A001517 Bessel polynomials y_n(x) (see A001498) evaluated at 2.

Original entry on oeis.org

1, 3, 19, 193, 2721, 49171, 1084483, 28245729, 848456353, 28875761731, 1098127402131, 46150226651233, 2124008553358849, 106246577894593683, 5739439214861417731, 332993721039856822081, 20651350143685984386753
Offset: 0

Views

Author

Keywords

Comments

Numerators of successive convergents to e using continued fraction 1 + 2/(1 + 1/(6 + 1/(10 + 1/(14 + 1/(18 + 1/(22 + 1/26 + ...)))))).
Number of ways to use the elements of {1,...,k}, n <= k <= 2n, once each to form a collection of n lists, each having length 1 or 2. - Bob Proctor, Apr 18 2005, Jun 26 2006

References

  • L. Euler, 1737.
  • I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, 6th ed., Section 0.126, p. 2.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Essentially the same as A080893.
a(n) = A099022(n)/n!.
Partial sums: A105747.
Replace "lists" with "sets" in comment: A001515.

Programs

  • Maple
    A:= gfun:-rectoproc({a(n) = (4*n-2)*a(n-1) + a(n-2),a(0)=1,a(1)=3},a(n),remember):
    map(A, [$0..20]); # Robert Israel, Jul 22 2015
    f:=proc(n) option remember; if n = 0 then 1 elif n=1 then 3 else f(n-2)+(4*n-2)*f(n-1); fi; end;
    [seq(f(n), n=0..20)]; # N. J. A. Sloane, May 09 2016
    seq(simplify(KummerU(-n, -2*n, 1)), n = 0..16); # Peter Luschny, May 10 2022
  • Mathematica
    Table[(2k)! Hypergeometric1F1[-k, -2k, 1]/k!, {k, 0, 10}] (* Vladimir Reshetnikov, Feb 16 2011 *)
  • PARI
    a(n)=sum(k=0,n,(n+k)!/k!/(n-k)!)
    
  • Sage
    A001517 = lambda n: hypergeometric([-n, n+1], [], -1)
    [simplify(A001517(n)) for n in (0..16)] # Peter Luschny, Oct 17 2014

Formula

a(n) = Sum_{k=0..n} (n+k)!/(k!*(n-k)!) = (e/Pi)^(1/2) K_{n+1/2}(1/2).
D-finite with recurrence a(n) = (4*n-2)*a(n-1) + a(n-2), n >= 2.
a(n) = (1/n!)*Sum_{k=0..n} (-1)^(n+k)*binomial(n,k)*A000522(n+k). - Vladeta Jovovic, Sep 30 2006
E.g.f. (for offset 1): exp(x*c(x)), where c(x)=(1-sqrt(1-4*x))/(2*x) (cf. A000108). - Vladimir Kruchinin, Aug 10 2010
G.f.: 1/Q(0), where Q(k) = 1 - x - 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
a(n) = (1/n!)*Integral_{x>=0} (x*(1 + x))^n*exp(-x) dx. Expansion of exp(x) in powers of y = x*(1 - x): exp(x) = 1 + y + 3*y^2/2! + 19*y^3/3! + 193*y^4/4! + 2721*y^5/5! + .... - Peter Bala, Dec 15 2013
a(n) = exp(1/2) / sqrt(Pi) * BesselK(n+1/2, 1/2). - Vaclav Kotesovec, Mar 15 2014
a(n) ~ 2^(2*n+1/2) * n^n / exp(n-1/2). - Vaclav Kotesovec, Mar 15 2014
a(n) = hypergeom([-n, n+1], [], -1). - Peter Luschny, Oct 17 2014
From G. C. Greubel, Aug 16 2017: (Start)
a(n) = (1/2)_{n} * 4^n * hypergeometric1f1(-n; -2*n; 1).
G.f.: (1/(1-t))*hypergeometric2f0(1, 1/2; -; 4*t/(1-t)^2). (End)
a(n) = Sum_{k=0..n} binomial(n,k)*binomial(n+k,k)*k!. - Ilya Gutkovskiy, Nov 24 2017
a(n) = KummerU(-n, -2*n, 1). - Peter Luschny, May 10 2022

Extensions

More terms from Vladeta Jovovic, Apr 03 2000
Additional comments from Michael Somos, Jul 15 2002

A105748 Number of ways to use the elements of {1,..,k}, 0<=k<=2n, once each to form a collection of n (possibly empty) sets, each with at most 2 elements.

Original entry on oeis.org

1, 3, 10, 47, 313, 2744, 29751, 383273, 5713110, 96673861, 1830257967, 38326484944, 879473289521, 21944639630923, 591545277653354, 17131028946645255, 530424623323416617, 17485652721425863464, 611431929749388274471, 22604399407882099928577
Offset: 0

Views

Author

Robert A. Proctor (www.math.unc.edu/Faculty/rap/), Apr 18 2005

Keywords

Examples

			a(2) = 10 = |{ {{},{}}, {{},{1}}, {{},{1,2}}, {{1},{2}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}, {{1,2},{3,4}}, {{1,3},{2,4}}, {{1,4},{2,3}} }|.
		

Crossrefs

First differences: A001515.
Replacing "collection" by "sequence" gives A003011.
Replacing "sets" by "lists" gives A105747.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 3, 10][n+1],
          2*n*a(n-1)-(2*n-2)*a(n-2)-a(n-3))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Mar 11 2015
  • Mathematica
    Sum[(k+i)!/i!/(k-i)!/2^i, {k, 0, n}, {i, 0, k}]
    (* Second program: *)
    a[n_] := E*Sqrt[2/Pi]*Sum[BesselK[k + 1/2, 1], {k, 0, n}]; Table[a[n] // Round, {n, 0, 25}] (* Jean-François Alcover, Jul 15 2017 *)
  • PARI
    A105748(n) = sum(k=0,n,sum(i=0,k, binomial(k+i,k-i)*binomial(2*i,i)*i!>>i))  \\ M. F. Hasler, Oct 09 2012

Formula

a(n) = Sum_{0<=i<=k<=n} (k+i)!/i!/(k-i)!/2^i.
G.f.: 1/U(0) where U(k)= 1 - 3*x + x^2 - x*4*k - x^2*(2*k+1)*(2*k+2)/U(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 06 2012
G.f.: 1/(1-x)/Q(0), where Q(k)= 1 - x - x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 19 2013
a(n) = 2*n*a(n-1) -(2*n-2)*a(n-2) -a(n-3) for n>2. - Alois P. Heinz, Mar 11 2015
a(n) ~ 2^(n + 1/2) * n^n / exp(n-1). - Vaclav Kotesovec, May 05 2024

A082765 Trinomial transform of the factorial numbers (A000142).

Original entry on oeis.org

1, 4, 45, 1282, 70177, 6239016, 817234189, 147950506390, 35370826189857, 10791515504716012, 4091225768720823181, 1886585105032464025674, 1039774852573506696192385, 674970732343624159361034832
Offset: 0

Views

Author

Emanuele Munarini, May 21 2003

Keywords

Comments

Number of ways to use the elements of {1,..,k}, 0<=k<=2n, once each to form a sequence of n (possibly empty) lists, each of length at most 2. - Bob Proctor, Apr 18 2005

Crossrefs

a(n) = Sum[C(n, k)*A099022(k), 0<=k<=n]
Replace "sequence" by "collection" in comment: A105747.
Replace "lists" by "sets" in comment: A003011.

Formula

a(n) = Sum[ Trinomial[n, k] k!, {k, 0, 2n} ] where Trinomial[n, k] = trinomial coefficients (A027907)
Integral_{x=0..infinity} (x^2+x+1)^n*exp(-x) dx - Gerald McGarvey, Oct 14 2006
Showing 1-3 of 3 results.