cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105755 Lucas 9-step numbers.

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 127, 255, 511, 1013, 2025, 4047, 8087, 16159, 32287, 64511, 128895, 257535, 514559, 1028105, 2054185, 4104323, 8200559, 16384959, 32737631, 65410751, 130692607, 261127679, 521740799, 1042453493, 2082852801
Offset: 1

Views

Author

T. D. Noe, Apr 22 2005

Keywords

Crossrefs

Cf. A000032, A001644, A073817, A074048, A074584, A104621, A105754 (Lucas n-step numbers).

Programs

  • Mathematica
    a={-1, -1, -1, -1, -1, -1, -1, -1, 9}; Table[s=Plus@@a; a=RotateLeft[a]; a[[ -1]]=s, {n, 50}]
  • Maxima
    a(n):=n*sum(sum((-1)^i*binomial(k,k-i)*binomial(n-9*i-1,k-1),i,0,(n-k)/9)/k,k,1,n);
    makelist(a(n),n,1,17); /* Vladimir Kruchinin, Aug 10 2011 */
    
  • PARI
    a(n)=([0,1,0,0,0,0,0,0,0; 0,0,1,0,0,0,0,0,0; 0,0,0,1,0,0,0,0,0; 0,0,0,0,1,0,0,0,0; 0,0,0,0,0,1,0,0,0; 0,0,0,0,0,0,1,0,0; 0,0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,0,1; 1,1,1,1,1,1,1,1,1]^(n-1)*[1;3;7;15;31;63;127;255;511])[1,1] \\ Charles R Greathouse IV, Jun 15 2015

Formula

a(n) = Sum_{k=1..9} a(n-k) for n > 0, a(0)=9, a(n)=-1 for n=-8..-1
G.f.: -x*(1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 8*x^7 + 9*x^8) / ( -1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 ). - R. J. Mathar, Jun 20 2011
a(n) = n*Sum_{k=1..n} (Sum_{i=0..floor((n-k)/9)} (-1)^i*binomial(k, k-i)*binomial(n-9*i-1, k-1))/k. - Vladimir Kruchinin, Aug 10 2011