A105774 A "fractal" transform of the Fibonacci numbers: a(1)=1; then if F(n) < k <= F(n+1), a(k) = F(n+1) - a(k - F(n)) where F(n) = A000045(n).
1, 1, 2, 4, 4, 7, 7, 6, 12, 12, 11, 9, 9, 20, 20, 19, 17, 17, 14, 14, 15, 33, 33, 32, 30, 30, 27, 27, 28, 22, 22, 23, 25, 25, 54, 54, 53, 51, 51, 48, 48, 49, 43, 43, 44, 46, 46, 35, 35, 36, 38, 38, 41, 41, 40, 88, 88, 87, 85, 85, 82, 82, 83, 77, 77, 78, 80, 80, 69, 69, 70, 72, 72
Offset: 1
Keywords
Examples
For 1 = F(2) < k <= F(3) = 2 the rule gives a(2) = 2 - a(1) = 1 ... if 5 = F(5) < k <= F(6) = 8 the rule forces a(6) = 8 - a(6-5) = 8 - a(1) = 7; a(7) = 8 - a(2) = 7; a(8) = 8 - a(3) = 6.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10946
- Benoit Cloitre and Jeffrey Shallit, Some Fibonacci-Related Sequences, arXiv:2312.11706 [math.CO], 2023.
- Jeffrey Shallit, Using automata to prove theorems about sequences, One FLAT World Seminar, 2024.
Crossrefs
Formula
limsup a(n)/n = tau and liminf a(n)/n = (tau+2)/5 where tau = (1+sqrt(5))/2. - Corrected by Jeffrey Shallit, Dec 17 2023
a(n) mod 2 = A085002(n) - Benoit Cloitre, May 10 2005
a(1) = 1; for n > 1, a(n) = A000045(2+A072649(n-1)) - a(n-A000045(1 + A072649(n-1))). - Antti Karttunen, Mar 17 2017
Comments