cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A050765 Composite n added to sum of its prime factors is nextprime(n).

Original entry on oeis.org

38400, 59290, 89700, 93639, 155952, 356400, 682080, 1226907, 1468320, 1648640, 2592000, 2995200, 3595500, 3933644, 5845203, 5967360, 8860995, 8953560, 9748480, 11351340, 12819224, 13226976, 13712490, 16193520, 18375000, 19294436, 21206016, 25259520, 28297500
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Examples

			nextprime(93639) = 93639 + (3+7+7+7+7+13) = 93683.
		

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 4, n <= 2*10^7, n = If[PrimeQ[n+1], n+2, n+1], If[n + Total[Times @@@ FactorInteger[n] ] == NextPrime[n], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 18 2013 *)
    cspfQ[n_]:=CompositeQ[n]&&NextPrime[n]==n+Total[Flatten[Table[ #[[1]], #[[2]]] &/@FactorInteger[n]]]; Select[Range[29*10^6],cspfQ] (* Harvey P. Dale, Oct 14 2017 *)

Extensions

Offset corrected by Donovan Johnson, Oct 18 2013

A235425 Numbers k such that between k and the next prime there are gpf(k) numbers, where gpf(k) denotes the largest prime factor of k.

Original entry on oeis.org

8, 64, 128, 625, 729, 1701, 2625, 3025, 4096, 6435, 8505, 10115, 12675, 14641, 17303, 19343, 19683, 19845, 21125, 25515, 25725, 26325, 26741, 27783, 32768, 33075, 33275, 34075, 35721, 38025, 39375, 42525, 43875, 50193, 59319, 60835, 61731, 70805, 75411, 75803
Offset: 1

Views

Author

Giovanni Resta, Jan 10 2014

Keywords

Examples

			64 = 2^6, whose largest prime factor is 2, is in the sequence because between 64 and 67 (the next prime) there are 2 numbers, 65 and 66.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], NextPrime[#] - # == 1 + FactorInteger[#][[-1, 1]] &]
  • PARI
    gpf(n)=n=factor(n)[,1];n[#n]
    is(n)=nextprime(n)-n==gpf(n)+1 \\ Charles R Greathouse IV, Jan 10 2014
Showing 1-2 of 2 results.