A105783 Number of terms among the first n primes that are divisors of the sum of the first n primes.
1, 0, 2, 0, 2, 0, 1, 2, 2, 1, 2, 0, 3, 0, 2, 1, 3, 1, 1, 2, 1, 1, 3, 1, 3, 2, 2, 1, 3, 2, 3, 1, 3, 1, 1, 1, 3, 2, 3, 2, 3, 1, 3, 1, 3, 1, 2, 2, 3, 3, 3, 2, 4, 1, 1, 3, 4, 2, 1, 0, 2, 1, 2, 0, 1, 2, 2, 3, 2, 3, 3, 1, 3, 1, 1, 2, 4, 1, 3, 3, 1, 1, 1, 4, 3, 2, 4, 3, 3, 3, 4, 1, 1, 2, 1, 0, 2, 3, 2, 0, 2, 0, 4, 1, 4
Offset: 1
Keywords
Examples
a(2)=0 because neither 2 nor 3 is a divisor of 5; a(5)=2 because exactly two terms from {2,3,5,7,11} are divisors of 2+3+5+7+11=28.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Crossrefs
Cf. A102863.
Programs
-
Maple
with(numtheory): a:=n->nops(factorset(sum(ithprime(k),k=1..n)) intersect {seq(ithprime(j),j=1..n)}): seq(a(n),n=1..130); # second Maple program: s:= proc(n) option remember; `if`(n<1, 0, ithprime(n)+s(n-1)) end: a:= n-> nops(select(x-> x <= ithprime(n), numtheory[factorset](s(n)))): seq(a(n), n=1..100); # Alois P. Heinz, Apr 11 2018
-
Mathematica
a[n_] := Module[{pp = Prime[Range[n]], s}, s = Total[pp]; Count[pp, p_ /; Divisible[s, p]]]; Array[a, 105] (* Jean-François Alcover, Jun 19 2018 *)
-
PARI
a(n) = #select(x->(x <= prime(n)), factor(sum(k=1, n, prime(k)))[,1]); \\ Michel Marcus, Apr 11 2018
Comments