A105784 Number of different forests of unrooted trees, without isolated vertices, on n labeled nodes.
0, 1, 3, 19, 155, 1641, 21427, 334377, 6085683, 126745435, 2975448641, 77779634571, 2241339267037, 70604384569005, 2414086713172695, 89049201691604881, 3525160713653081279, 149075374211881719939, 6707440248292609651513, 319946143503599791200675
Offset: 1
Keywords
Examples
a(4) = 19 because there are 19 different such forests on 4 labeled nodes: 4^2 are trees, 3 have two trees and none can have more than two trees. From _Gus Wiseman_, Apr 28 2024: (Start) Edge-sets of the a(2) = 1 through a(4) = 19 forests: 12 12,13 12,34 12,23 13,24 13,23 14,23 12,13,14 12,13,24 12,13,34 12,14,23 12,14,34 12,23,24 12,23,34 12,24,34 13,14,23 13,14,24 13,23,24 13,23,34 13,24,34 14,23,24 14,23,34 14,24,34 (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..150
Programs
-
Maple
b:= n-> add(add(binomial(m, j) *binomial(n-1, n-m-j) *n^(n-m-j) *(m+j)!/ (-2)^j, j=0..m)/m!, m=0..n): a:= n-> add(b(k) *(-1)^(n-k) *binomial(n, k), k=0..n): seq(a(n), n=1..17); # Alois P. Heinz, Sep 10 2008
-
Mathematica
Unprotect[Power]; 0^0 = 1; b[n_] := Sum[Sum[Binomial[m, j]*Binomial[n-1, n -m-j]*n^(n-m-j)*(m+j)!/(-2)^j, {j, 0, m}]/m!, {m, 0, n}]; a[n_] := Sum[ b[k]*(-1)^(n-k)*Binomial[n, k], {k, 0, n}]; Table[a[n], {n, 1, 17}] (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)
Formula
a(n)= sum N/D over all the partitions of n: 1K1 + 2K2 + ... + nKn, with smallest part greater than 1, where N = n!*Product_{i=1..n}i^((i-2)Ki) and D = Product_{i=1..n}(Ki!(i!)^Ki).
Inverse binomial transform of A001858. E.g.f.: exp(-x-LambertW(-x) -LambertW(-x)^2/2). - Vladeta Jovovic, Apr 22 2005
a(n) ~ exp(-exp(-1)+1/2) * n^(n-2). - Vaclav Kotesovec, Aug 16 2013
Comments