A105931 a(1) = 1 then a(n) = a(n-1) - (-1)^ceiling(n/2)*a(floor(n/2)).
1, 2, 1, -1, 1, 2, 1, 2, 1, 2, 1, -1, 1, 2, 1, -1, 1, 2, 1, -1, 1, 2, 1, 2, 1, 2, 1, -1, 1, 2, 1, 2, 1, 2, 1, -1, 1, 2, 1, 2, 1, 2, 1, -1, 1, 2, 1, -1, 1, 2, 1, -1, 1, 2, 1, 2, 1, 2, 1, -1, 1, 2, 1, -1, 1, 2, 1, -1, 1, 2, 1, 2, 1, 2, 1, -1, 1, 2, 1, -1, 1, 2, 1, -1, 1, 2, 1, 2, 1, 2, 1, -1, 1, 2, 1, 2, 1, 2, 1, -1, 1, 2, 1, 2, 1, 2, 1, -1, 1, 2, 1, -1, 1, 2, 1, -1, 1, 2
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
a[n_] := Module[{e = IntegerExponent[n, 2]}, If[e > 0, If[Mod[e, 2] == 1, 2, -1], 1]]; Array[a, 100] (* Amiram Eldar, Nov 30 2022 after the second PARI code *)
-
PARI
a(n)=if(n<2,1,a(n-1)-(-1)^ceil(n/2)*a(floor(n/2)))
-
PARI
a(n)={my(e=valuation(n, 2)); if(e>0, if(e%2, 2, -1), 1)} \\ Andrew Howroyd, Aug 06 2018
Formula
abs(a(n)) = A056832(n).
a(k) = -1 iff k is in 4*A003159.
From Amiram Eldar, Nov 30 2022: (Start)
Multiplicative with a(2^e) = 2 if e is odd and -1 if e is even, and a(p^e) = 1 for p > 2.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1. (End)
Dirichlet g.f.: zeta(s)*(4^s+2^(s+1)-2)/(4^s+2^s). - Amiram Eldar, Jan 04 2023
Comments