A105940 a(n) = binomial(n+5, 5)*binomial(n+8, 5).
56, 756, 5292, 25872, 99792, 324324, 924924, 2378376, 5621616, 12388376, 25729704, 50791104, 95938752, 174350232, 306211752, 521694096, 864913896, 1399125420, 2213431220, 3431347920, 5221616400, 7811703900, 11504509380, 16698853080, 23914406880, 33821804016
Offset: 0
Examples
a(0) = C(0+5,0)*C(0+8,5) = C(5,0)*C(8,5) = 1*56 = 56 a(6) = C(6+5,6)*C(6+8,5) = C(11,6)*C(14,5) = 462*2002 = 924924.
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
Crossrefs
Cf. A062145.
Programs
-
Magma
A105940:= func< n | Binomial(n+5,5)*Binomial(n+8,5) >; [A105940(n): n in [0..40]]; // G. C. Greubel, Mar 11 2025
-
Maple
with(combinat); for i from 0 to 25 do print(i,numbcomb(i+5,i)*numbcomb(i+8,5)); end; # Jim Nastos, Oct 26 2005
-
Mathematica
a[n_] := Binomial[n + 5, 5] * Binomial[n + 8, 5]; Array[a, 25, 0] (* Amiram Eldar, Sep 01 2022 *)
-
SageMath
def A105940(n): return binomial(n+5,5)*binomial(n+8,5) print([A105940(n) for n in range(41)]) # G. C. Greubel, Mar 11 2025
Formula
G.f.: 28*(2+x)*(1+2*x) / (1-x)^11. - Colin Barker, Jan 28 2013
From Amiram Eldar, Sep 01 2022: (Start)
Sum_{n>=0} 1/a(n) = 580367/1764 - 100*Pi^2/3.
Sum_{n>=0} (-1)^n/a(n) = 74537/588 - 1280*log(2)/7. (End)
Extensions
More terms from Jim Nastos, Oct 26 2005