cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105941 Powers of Lucas numbers.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 9, 11, 16, 18, 27, 29, 32, 47, 49, 64, 76, 81, 121, 123, 128, 199, 243, 256, 322, 324, 343, 512, 521, 729, 841, 843, 1024, 1331, 1364, 2048, 2187, 2207, 2209, 2401, 3571, 4096, 5776, 5778, 5832, 6561, 8192, 9349, 14641, 15127, 15129, 16384
Offset: 1

Views

Author

Jonathan Vos Post, Apr 27 2005

Keywords

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 56.
  • Thomas Koshy, "Fibonacci and Lucas Numbers and Applications", Wiley, New York, 2001.
  • V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers. Houghton, Boston, MA, 1969.

Crossrefs

A000032 Lucas numbers. A001254 Squares of Lucas numbers. A075155 Cubes of Lucas numbers. A099923 Fourth powers of Lucas numbers. A103325 Fifth powers of Lucas numbers. A103324 Square array T(n, k) read by antidiagonals: powers of Lucas numbers. A105317 Powers of Fibonacci numbers.

Programs

  • Mathematica
    lim = 10^5; t = Table[f = LucasL[n]; If[f == 1, {1}, f^Range[Floor[Log[lim]/Log[f]]]], {n, 0, Floor[Log[GoldenRatio, lim]]}]; Union[Flatten[t]] (* T. D. Noe, Sep 27 2011 *)

Formula

{a(n)} = {A000204} U {A001254} U {A075155} U {A099923} U {A103325}... L(n)^2 = L(2n) + 2(-1)^n = L(n-1)*L(n+1) + 5(-1)^n. L(n)^3 = L(3n) + 3(-1)^n*L(n). L(n)^4 = L(4n) + 4(-1)^n*L(2n) + 6. L(n)^5 = L(5n) + 5(-1)^n*L(3n) + 10L(n).

Extensions

Corrected by T. D. Noe, Sep 26 2011