A105951 a(2*n) = -(2^(2*n+1) + 1), a(2*n+1) = (2^(n+1) - (-1)^n)^2.
-3, 1, -9, 25, -33, 49, -129, 289, -513, 961, -2049, 4225, -8193, 16129, -32769, 66049, -131073, 261121, -524289, 1050625, -2097153, 4190209, -8388609, 16785409, -33554433, 67092481, -134217729, 268468225, -536870913, 1073676289, -2147483649
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Robert Munafo, Sequences Related to Floretions
Programs
-
Mathematica
CoefficientList[Series[-(3 + 8*x + 18*x^2 + 16*x^3)/((2*x + 1)*(x + 1)*(2*x^2 + 1)), {x,0,50}], x] (* G. C. Greubel, Jan 01 2018 *)
-
PARI
x='x+O('x^30); Vec(-(3 + 8*x + 18*x^2 + 16*x^3)/((2*x + 1)*(x + 1)*(2*x^2 + 1))) \\ G. C. Greubel, Jan 01 2018
-
Python
def A105951(n): return (1<
>1)&1 else -(1< Chai Wah Wu, Mar 07 2024
Formula
G.f.: -(3 +8*x +18*x^2 +16*x^3)/((2*x+1)*(x+1)*(2*x^2+1)).
Comments