A105954 Array read by descending antidiagonals: A(n, k) = (n + 1)! * H(k, n + 1), where H(n, k) is a higher-order harmonic number, H(0, k) = 1/k and H(n, k) = Sum_{j=1..k} H(n-1, j), for 0 <= k <= n.
1, 1, 1, 1, 3, 2, 1, 5, 11, 6, 1, 7, 26, 50, 24, 1, 9, 47, 154, 274, 120, 1, 11, 74, 342, 1044, 1764, 720, 1, 13, 107, 638, 2754, 8028, 13068, 5040, 1, 15, 146, 1066, 5944, 24552, 69264, 109584, 40320, 1, 17, 191, 1650, 11274, 60216, 241128, 663696, 1026576, 362880
Offset: 0
Examples
A(2, 2) = (1 + (1 + 1/2) + (1 + 1/2 + 1/3))*6 = 26. Array A(n, k) begins: [n\k] 0 1 2 3 4 5 6 ------------------------------------------------------------------- [0] 1, 1, 1, 1, 1, 1, 1, ... [1] 1, 3, 5, 7, 9, 11, 13, ... [2] 2, 11, 26, 47, 74, 107, 146, ... [3] 6, 50, 154, 342, 638, 1066, 1650, ... [4] 24, 274, 1044, 2754, 5944, 11274, 19524, ... [5] 120, 1764, 8028, 24552, 60216, 127860, 245004, ... [6] 720, 13068, 69264, 241128, 662640, 1557660, 3272688, ... [7] 5040, 109584, 663696, 2592720, 7893840, 20355120, 46536624, ...
Links
- G. C. Greubel, Table of n, a(n) for the first 27 rows, flattened
- Arthur T. Benjamin, David Gaebler and Robert Gaebler, A Combinatorial Approach to Hyperharmonic Numbers, INTEGERS, Electronic Journal of Combinatorial Number Theory, Volum 3, #A15, 2003.
Crossrefs
Column 0 = A000142 (factorial numbers).
Column 1 = A000254 (Stirling numbers of first kind s(n, 2)) starting at n=1.
Column 2 = A001705 (Generalized Stirling numbers: a(n) = n!*Sum_{k=0..n-1}(k+1)/(n-k)), starting at n=1.
Column 3 = A001711 (Generalized Stirling numbers: a(n) = Sum_{k=0..n}(-1)^(n+k)*(k+1)*3^k*stirling1(n+1, k+1)).
Column 4 = A001716 (Generalized Stirling numbers: a(n) = Sum_{k=0..n}(-1)^(n+k)*(k+1)*4^k*stirling1(n+1, k+1)).
Column 5 = A001721 (Generalized Stirling numbers: a(n) = Sum_{k=0..n}(-1)^(n+k)*binomial(k+1, 1)*5^k*stirling1(n+1, k+1)).
2nd row is A005408 (2n - 1, starting at n=1).
3rd row is A080663 (3n^2 - 1, starting at n=1).
Main diagonal gives A384024.
Programs
-
Maple
H := proc(n, k) option remember; if n = 0 then 1/k else add(H(n - 1, j), j = 1..k) fi end: A := (n, k) -> (n + 1)!*H(k, n + 1): # Alternative with standard harmonic number: A := (n, k) -> if k = 0 then n! else (harmonic(n + k) - harmonic(k - 1))*(n + k)! / (k - 1)! fi: for n from 0 to 7 do seq(A(n, k), k = 0..6) od; # Alternative with hypergeometric formula: A := (n, k) -> (n+1)*((n + k)! / k!)*hypergeom([-n, 1, 1], [2, k+1], 1): seq(print(seq(simplify(A(n, k)), k = 0..6)), n=0..7); # Peter Luschny, Jul 01 2022
-
Mathematica
H[0, m_] := 1/m; H[n_, m_] := Sum[H[n - 1, k], {k, m}]; a[n_, m_] := m!H[n, m]; Flatten[ Table[ a[i, n - i], {n, 10}, {i, n - 1, 0, -1}]] Table[ a[n, m], {m, 8}, {n, 0, m + 1}] // TableForm (* to view the table *) (* Robert G. Wilson v, Jun 27 2005 *)
-
PARI
a(n, k) = polcoef(prod(j=0, n, 1+(j+k)*x), n); \\ Seiichi Manyama, May 19 2025
Formula
A(n, k) = (Harmonic(n + k) - Harmonic(k - 1))*(n + k)!/(k - 1)! if k > 0, otherwise n!.
From Gerald McGarvey, Aug 27 2005, edited by Peter Luschny, Jul 02 2022: (Start)
E.g.f. for column k: -log(1 - x)/(x*(1 - x)^k).
Row 3 is r(n) = 4*n^3 + 18*n^2 + 22*n + 6.
Row 4 is r(n) = 5*n^4 + 40*n^3 + 105*n^2 + 100*n + 24.
Row 5 is r(n) = 6*n^5 + 75*n^4 + 340*n^3 + 675*n^2 + 548*n + 120.
Row 6 is r(n) = 7*n^6 + 126*n^5 + 875*n^4 + 2940*n^3 + 4872*n^2 + 3528*n + 720.
Row 7 is r(n) = 8*n^7 + 196*n^6 + 1932*n^5 + 9800*n^4 + 27076*n^3 + 39396*n^2 + 26136*n + 5040.
The sum of the polynomial coefficients for the n-th row is |S1(n, 2)|, which are the unsigned Stirling1 numbers which appear in column 1.
A(m, n) = Sum_{k=1..m} n*A094645(m, n)*(n+1)^(k-1). (A094645 is Generalized Stirling number triangle of first kind, e.g.f.: (1-y)^(1-x).) (End)
In Gerard McGarvey's formulas for the row coefficients we find Wiggen's triangle A028421 and their o.g.f.s lead to Wood's polynomials A126671; see A165674. - Johannes W. Meijer, Oct 16 2009
A(n, k) = (n + 1)*((n + k)! / k!)*hypergeom([-n, 1, 1], [2, k + 1], 1). - Peter Luschny, Jul 01 2022
A(n,k) = [x^n] Product_{j=0..n} (1 + (j+k)*x). - Seiichi Manyama, May 19 2025
Extensions
More terms from Robert G. Wilson v, Jun 27 2005
Edited by Peter Luschny, Jul 02 2022
Comments