A108123 Duplicate of A105954.
1, 1, 1, 1, 3, 2, 1, 5, 11, 6, 1, 7, 26, 50, 24, 1, 9, 47, 154, 274, 120, 1, 11, 74, 342, 1044
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
nmax:=9; for n from 1 to nmax do a(n, n) := 1 od: for n from 2 to nmax do a(n, 1) := n*a(n-1, 1) + (n-1)! od: for n from 3 to nmax do for m from 2 to n-1 do a(n, m) := (n-m+1)*a(n-1, m) + a(n-1, m-1) od: od: seq(seq(a(n, m), m = 1..n), n = 1..nmax); # End program 1 nmax := nmax+1: m:=2; with(combinat): EA := proc(x, m, n) local E, i; E:=0: for i from m-1 to nmax+2 do E := E + sum((-1)^(m+k1+1) * binomial(k1, m-1) * n^(k1-m+1) * stirling1(i, k1), k1=m-1..i) / x^(i-m+1) od: E:= exp(-x)/x^(m) * E: return(E); end: for n1 from 1 to nmax do f(n1-1) := simplify(exp(x) * x^(nmax+3) * EA(x, m, n1)); for m1 from 0 to nmax+2 do b(n1-1, m1) := coeff(f(n1-1), x, nmax+2-m1) od: od: for n1 from 0 to nmax-1 do for m1 from 0 to n1-m+1 do a(n1-m+2, m1+1) := abs(b(m1, n1-m1)) od: od: seq(seq(a(n, m), m = 1..n),n = 1..nmax-1); # End program 2 # Maple programs revised by Johannes W. Meijer, Sep 22 2012
Triangle T(n, k) begins: [0] 1; [1] 1, 1; [2] 2, 3, 1; [3] 6, 11, 5, 1; [4] 24, 50, 26, 7, 1; [5] 120, 274, 154, 47, 9, 1; [6] 720, 1764, 1044, 342, 74, 11, 1; [7] 5040, 13068, 8028, 2754, 638, 107, 13, 1; Seen as an array (the triangle arises when read by descending antidiagonals): [0] 1, 1, 2, 6, 24, 120, 720, 5040, ... [1] 1, 3, 11, 50, 274, 1764, 13068, 109584, ... [2] 1, 5, 26, 154, 1044, 8028, 69264, 663696, ... [3] 1, 7, 47, 342, 2754, 24552, 241128, 2592720, ... [4] 1, 9, 74, 638, 5944, 60216, 662640, 7893840, ... [5] 1, 11, 107, 1066, 11274, 127860, 1557660, 20355120, ... [6] 1, 13, 146, 1650, 19524, 245004, 3272688, 46536624, ... [7] 1, 15, 191, 2414, 31594, 434568, 6314664, 97053936, ...
nmax := 8; for n from 0 to nmax do a(n, 0) := n! od: for n from 0 to nmax do a(n, n) := 1 od: for n from 2 to nmax do for m from 1 to n-1 do a(n, m) := (n-m+1)*a(n-1, m) + a(n-1, m-1) od: od: seq(seq(a(n, m), m=0..n), n=0..nmax); # Johannes W. Meijer, revised Nov 27 2012 # Shows the array format, using hyperharmonic numbers. H := proc(n, k) option remember; if n = 0 then 1/(k+1) else add(H(n - 1, j), j = 0..k) fi end: seq(lprint(seq((k + 1)!*H(n, k), k = 0..7)), n = 0..7); # Shows the array format, using the hypergeometric formula. A := (n, k) -> (k+1)*((n + k)! / n!)*hypergeom([-k, 1, 1], [2, n + 1], 1): seq(lprint(seq(simplify(A(n, k)), k = 0..7)), n = 0..7); # Peter Luschny, Jul 03 2022
a[n_] := SymmetricPolynomial[n - 1, t[n]]; z = 10; t[n_] := Table[k - 1, {k, 1, n}]; t1 = Table[a[n], {n, 1, z}] (* A000142 *) t[n_] := Table[k, {k, 1, n}]; t2 = Table[a[n], {n, 1, z}] (* A000254 *) t[n_] := Table[k + 1, {k, 1, n}]; t3 = Table[a[n], {n, 1, z}] (* A001705 *) t[n_] := Table[k + 2, {k, 1, n}]; t4 = Table[a[n], {n, 1, z}] (* A001711 *) t[n_] := Table[k + 3, {k, 1, n}]; t5 = Table[a[n], {n, 1, z}] (* A001716 *) t[n_] := Table[k + 4, {k, 1, n}]; t6 = Table[a[n], {n, 1, z}] (* A001721 *) t[n_] := Table[k + 5, {k, 1, n}]; t7 = Table[a[n], {n, 1, z}] (* A051524 *) t[n_] := Table[k + 6, {k, 1, n}]; t8 = Table[a[n], {n, 1, z}] (* A051545 *) t[n_] := Table[k + 7, {k, 1, n}]; t9 = Table[a[n], {n, 1, z}] (* A051560 *) t[n_] := Table[k + 8, {k, 1, n}]; t10 = Table[a[n], {n, 1, z}] (* A051562 *) t[n_] := Table[k + 9, {k, 1, n}]; t11 = Table[a[n], {n, 1, z}] (* A051564 *) t[n_] := Table[k + 10, {k, 1, n}];t12 = Table[a[n], {n, 1, z}] (* A203147 *) t = {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10}; TableForm[t] (* A165675 in square format *) m[i_, j_] := t[[i]][[j]]; (* A165675 as a sequence *) Flatten[Table[m[i, n + 1 - i], {n, 1, 10}, {i, 1, n}]] (* Clark Kimberling, Dec 29 2011 *) A[n_, k_] := (k + 1)*((n + k)! / n!)*HypergeometricPFQ[{-k, 1, 1}, {2, n + 1}, 1]; Table[A[n, k], {n, 0, 7}, {k, 0, 7}] // TableForm (* Peter Luschny, Jul 03 2022 *)
from functools import cache @cache def Trow(n: int) -> list[int]: if n == 0: return [1] row = Trow(n - 1) + [1] for m in range(n - 1, 0, -1): row[m] = (n - m + 1) * row[m] + row[m - 1] row[0] *= n return row for n in range(9): print(Trow(n)) # Peter Luschny, Feb 27 2025
Triangle begins: 1 1 3 1 5 11 1 7 26 50 1 9 47 154 274 ... a(5, 3) = 4*3*2+5*3*2+5*4*2+5*4*3 = 154.
T[n_, 0] := 1; T[n_, k_]:= Product[i, {i, n - k, n}]*Sum[1/i, {i, n - k, n}]; Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] (* G. C. Greubel, Jan 21 2017 *)
a(n, k) = prod(i=n-k, n, i)*sum(i=n-k,n,1/i); tabl(nn) = for (n=1, nn, for (k=0, n-1, print1(a(n,k), ", ")); print()); \\ Michel Marcus, Jan 21 2017
E.g.f.= x + 5*x^2/2 + 11*x^3/3! + 6*x^4/4! - 6*x^5/5! + ....
[1,5,11] cat [(-1)^n*6*Factorial(n-4): n in [4..25]]; // Vincenzo Librandi, Jun 20 2016
CoefficientList[Series[(1+t)^3 * Log[1+t], {t, 1, 20}], t]*Range[1, 20]! (* G. C. Greubel, Jun 19 2016 *)
E.g.f.= x + 9*x^2/2 + 47*x^3/3! + 154*x^4/4! + 274*x^5/5! + 120*x^6/6! - 120*x^7/7! + ....
[1,9,47,154,274] cat [(-1)^n*120*Factorial(n - 6): n in [6..25]]; // Vincenzo Librandi, Jun 20 2016
CoefficientList[Series[(1+t)^5 * Log[1+t], {t,1,20}],t]*Range[1,20]! (* G. C. Greubel, Jun 19 2016 *)
E.g.f.= x + 7*x^2/2 + 26*x^3/3! + 50*x^4/4! + 24*x^5/5! - 24*x^6/6! + ...
[1,7,26,50] cat [(-1)^(n-1)*24*Factorial(n-5): n in [5..25]]; // Vincenzo Librandi, Jun 20 2016
CoefficientList[Series[(1+t)^4 * Log[1+t], {t, 1, 20}], t]*Range[1, 20]! (* G. C. Greubel, Jun 19 2016 *)
Array: (The upper-leftmost term is T(1,0).) 1, 2, 24, 720 (Row equals {(2*m-2)!}.) 1, 10, 252 (Row equals {H(1,2*m)*(2*m)!/(2*m+1)}, where H(1,2*m) = the (2*m)th harmonic number.) 1, 22 (Row equals {H(2,2*m)*(2*m)!/(2*m+3)}.) 1 (Row equals {H(3,2*m)*(2*m)!/(2*m+5)}.) The column {T(1,n)} consists entirely of 1's.
Comments