A028421
Triangle read by rows: T(n, k) = (k+1)*A132393(n+1, k+1), for 0 <= k <= n.
Original entry on oeis.org
1, 1, 2, 2, 6, 3, 6, 22, 18, 4, 24, 100, 105, 40, 5, 120, 548, 675, 340, 75, 6, 720, 3528, 4872, 2940, 875, 126, 7, 5040, 26136, 39396, 27076, 9800, 1932, 196, 8, 40320, 219168, 354372, 269136, 112245, 27216, 3822, 288, 9
Offset: 0
Peter Wiggen (wiggen(AT)math.psu.edu)
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10
------------------------------------------------------------------------------------
0: 1
1: 1 2
2: 2 6 3
3: 6 22 18 4
4: 24 100 105 40 5
5: 120 548 675 340 75 6
6: 720 3528 4872 2940 875 126 7
7: 5040 26136 39396 27076 9800 1932 196 8
8: 40320 219168 354372 269136 112245 27216 3822 288 9
9: 362880 2053152 3518100 2894720 1346625 379638 66150 6960 405 10
10: 3628800 21257280 38260728 33638000 17084650 5412330 1104411 145200 11880 550 11
... - _Wolfdieter Lang_, Nov 23 2018
Row sums give
A000254(n+1), n >= 0.
The asymptotic expansion of E(x,m=2,n) leads to
A000254 (n=1),
A001705 (n=2),
A001711 (n=3),
A001716 (n=4),
A001721 (n=5),
A051524 (n=6),
A051545 (n=7),
A051560 (n=8),
A051562 (n=9),
A051564 (n=10),
A093905 (triangle) and
A165674 (triangle).
-
A028421 := proc(n,k) (-1)^(n+k)*(k+1)*Stirling1(n+1,k+1) end:
seq(seq(A028421(n,k), k=0..n), n=0..8);
# Johannes W. Meijer, Oct 07 2009, Revised Sep 09 2012
egf := (1 - t)^(-x - 1)*(1 - x*log(1 - t)):
ser := series(egf, t, 16): coefft := n -> expand(coeff(ser,t,n)):
seq(seq(n!*coeff(coefft(n), x, k), k = 0..n), n = 0..8); # Peter Luschny, Jun 12 2022
-
f[n_, k_] = (k + 1) StirlingS1[n + 1, k + 1] // Abs; Flatten[Table[f[n, k], {n, 0, 9}, {k, 0, n}]][[1 ;; 47]] (* Jean-François Alcover, Jun 01 2011, after formula *)
-
# uses[riordan_square from A321620]
riordan_square(-ln(1 - x), 10, True) # Peter Luschny, Jan 03 2019
A165674
Triangle generated by the asymptotic expansions of the E(x,m=2,n).
Original entry on oeis.org
1, 3, 1, 11, 5, 1, 50, 26, 7, 1, 274, 154, 47, 9, 1, 1764, 1044, 342, 74, 11, 1, 13068, 8028, 2754, 638, 107, 13, 1, 109584, 69264, 24552, 5944, 1066, 146, 15, 1, 1026576, 663696, 241128, 60216, 11274, 1650, 191, 17, 1
Offset: 1
A093905 is the reversal of this triangle.
A080663, n>=2, is the third right hand column.
A094587 is generated by the asymptotic expansions of E(x, m=1, n).
-
nmax:=9; for n from 1 to nmax do a(n, n) := 1 od: for n from 2 to nmax do a(n, 1) := n*a(n-1, 1) + (n-1)! od: for n from 3 to nmax do for m from 2 to n-1 do a(n, m) := (n-m+1)*a(n-1, m) + a(n-1, m-1) od: od: seq(seq(a(n, m), m = 1..n), n = 1..nmax);
# End program 1
nmax := nmax+1: m:=2; with(combinat): EA := proc(x, m, n) local E, i; E:=0: for i from m-1 to nmax+2 do E := E + sum((-1)^(m+k1+1) * binomial(k1, m-1) * n^(k1-m+1) * stirling1(i, k1), k1=m-1..i) / x^(i-m+1) od: E:= exp(-x)/x^(m) * E: return(E); end: for n1 from 1 to nmax do f(n1-1) := simplify(exp(x) * x^(nmax+3) * EA(x, m, n1)); for m1 from 0 to nmax+2 do b(n1-1, m1) := coeff(f(n1-1), x, nmax+2-m1) od: od: for n1 from 0 to nmax-1 do for m1 from 0 to n1-m+1 do a(n1-m+2, m1+1) := abs(b(m1, n1-m1)) od: od: seq(seq(a(n, m), m = 1..n),n = 1..nmax-1);
# End program 2
# Maple programs revised by Johannes W. Meijer, Sep 22 2012
A105954
Array read by descending antidiagonals: A(n, k) = (n + 1)! * H(k, n + 1), where H(n, k) is a higher-order harmonic number, H(0, k) = 1/k and H(n, k) = Sum_{j=1..k} H(n-1, j), for 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 3, 2, 1, 5, 11, 6, 1, 7, 26, 50, 24, 1, 9, 47, 154, 274, 120, 1, 11, 74, 342, 1044, 1764, 720, 1, 13, 107, 638, 2754, 8028, 13068, 5040, 1, 15, 146, 1066, 5944, 24552, 69264, 109584, 40320, 1, 17, 191, 1650, 11274, 60216, 241128, 663696, 1026576, 362880
Offset: 0
A(2, 2) = (1 + (1 + 1/2) + (1 + 1/2 + 1/3))*6 = 26.
Array A(n, k) begins:
[n\k] 0 1 2 3 4 5 6
-------------------------------------------------------------------
[0] 1, 1, 1, 1, 1, 1, 1, ...
[1] 1, 3, 5, 7, 9, 11, 13, ...
[2] 2, 11, 26, 47, 74, 107, 146, ...
[3] 6, 50, 154, 342, 638, 1066, 1650, ...
[4] 24, 274, 1044, 2754, 5944, 11274, 19524, ...
[5] 120, 1764, 8028, 24552, 60216, 127860, 245004, ...
[6] 720, 13068, 69264, 241128, 662640, 1557660, 3272688, ...
[7] 5040, 109584, 663696, 2592720, 7893840, 20355120, 46536624, ...
- G. C. Greubel, Table of n, a(n) for the first 27 rows, flattened
- Arthur T. Benjamin, David Gaebler and Robert Gaebler, A Combinatorial Approach to Hyperharmonic Numbers, INTEGERS, Electronic Journal of Combinatorial Number Theory, Volum 3, #A15, 2003.
Column 0 =
A000142 (factorial numbers).
Column 1 =
A000254 (Stirling numbers of first kind s(n, 2)) starting at n=1.
Column 2 =
A001705 (Generalized Stirling numbers: a(n) = n!*Sum_{k=0..n-1}(k+1)/(n-k)), starting at n=1.
Column 3 =
A001711 (Generalized Stirling numbers: a(n) = Sum_{k=0..n}(-1)^(n+k)*(k+1)*3^k*stirling1(n+1, k+1)).
Column 4 =
A001716 (Generalized Stirling numbers: a(n) = Sum_{k=0..n}(-1)^(n+k)*(k+1)*4^k*stirling1(n+1, k+1)).
Column 5 =
A001721 (Generalized Stirling numbers: a(n) = Sum_{k=0..n}(-1)^(n+k)*binomial(k+1, 1)*5^k*stirling1(n+1, k+1)).
2nd row is
A005408 (2n - 1, starting at n=1).
3rd row is
A080663 (3n^2 - 1, starting at n=1).
-
H := proc(n, k) option remember; if n = 0 then 1/k else add(H(n - 1, j), j = 1..k) fi end: A := (n, k) -> (n + 1)!*H(k, n + 1):
# Alternative with standard harmonic number:
A := (n, k) -> if k = 0 then n! else (harmonic(n + k) - harmonic(k - 1))*(n + k)! / (k - 1)! fi:
for n from 0 to 7 do seq(A(n, k), k = 0..6) od;
# Alternative with hypergeometric formula:
A := (n, k) -> (n+1)*((n + k)! / k!)*hypergeom([-n, 1, 1], [2, k+1], 1):
seq(print(seq(simplify(A(n, k)), k = 0..6)), n=0..7); # Peter Luschny, Jul 01 2022
-
H[0, m_] := 1/m; H[n_, m_] := Sum[H[n - 1, k], {k, m}]; a[n_, m_] := m!H[n, m]; Flatten[ Table[ a[i, n - i], {n, 10}, {i, n - 1, 0, -1}]]
Table[ a[n, m], {m, 8}, {n, 0, m + 1}] // TableForm (* to view the table *)
(* Robert G. Wilson v, Jun 27 2005 *)
-
a(n, k) = polcoef(prod(j=0, n, 1+(j+k)*x), n); \\ Seiichi Manyama, May 19 2025
A093344
a(n) = n! * Sum_{i=1..n} (1/i)*Sum_{j=0..i-1} 1/j!.
Original entry on oeis.org
0, 1, 4, 17, 84, 485, 3236, 24609, 210572, 2004749, 21033900, 241237001, 3003349124, 40345599957, 581765196884, 8963453118065, 146969877361116, 2555361954692189, 46963373856864092, 909707559383702169, 18524816853636447380, 395634467245613474981
Offset: 0
-
f:= gfun:-rectoproc({a(0) = 0, a(1) = 1, a(2) = 4, a(n) = 2*n*a(n-1) + (2-n^2)*a(n-2) + (n-2)^2*a(n-3)},a(n),remember):
seq(f(n),n=0..50); # Robert Israel, Oct 28 2015
-
Round@Table[E n! Sum[Gamma[k, 1]/k!, {k, 1, n}], {n, 0, 20}]
Round@Table[E ((HarmonicNumber[n] + ExpIntegralEi[-1] - EulerGamma) n! + HypergeometricPFQ[{n+1,n+1},{n+2,n+2},-1]/(n+1)^2), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 28 2015 *)
-
a(n) = n!*sum(i=1,n,1/i*sum(j=0,i-1,1/j!))
A067176
A triangle of generalized Stirling numbers: sum of consecutive terms in the harmonic sequence multiplied by the product of their denominators.
Original entry on oeis.org
0, 1, 0, 3, 1, 0, 11, 5, 1, 0, 50, 26, 7, 1, 0, 274, 154, 47, 9, 1, 0, 1764, 1044, 342, 74, 11, 1, 0, 13068, 8028, 2754, 638, 107, 13, 1, 0, 109584, 69264, 24552, 5944, 1066, 146, 15, 1, 0, 1026576, 663696, 241128, 60216, 11274, 1650, 191, 17, 1, 0, 10628640
Offset: 0
Rows start 0; 1,0; 3,1,0; 11,5,1,0; 50,26,7,1,0; 274,154,47,9,1,0 etc. a(5,2) = 3*4*5*(1/3 + 1/4 + 1/5) = 4*5 + 3*5 + 3*4 = 20 + 15 + 12 = 47.
Columns are
A000254,
A001705,
A001711,
A001716,
A001721,
A051524,
A051545,
A051560,
A051562,
A051564, etc.
-
T[0, k_] := 1; T[n_, k_] := T[n, k] = Sum[ i*k^(i - 1)*Abs[StirlingS1[n - k, i]], {i, 1, n - k}]; Table[T[n,k], {n,1,10}, {k,1,n}] (* G. C. Greubel, Jan 21 2017 *)
Showing 1-5 of 5 results.
Comments