cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A093904 Duplicate of A093344.

Original entry on oeis.org

0, 1, 4, 17, 84, 485, 3236, 24609, 210572, 2004749, 21033900, 241237001
Offset: 1

Views

Author

Keywords

A165674 Triangle generated by the asymptotic expansions of the E(x,m=2,n).

Original entry on oeis.org

1, 3, 1, 11, 5, 1, 50, 26, 7, 1, 274, 154, 47, 9, 1, 1764, 1044, 342, 74, 11, 1, 13068, 8028, 2754, 638, 107, 13, 1, 109584, 69264, 24552, 5944, 1066, 146, 15, 1, 1026576, 663696, 241128, 60216, 11274, 1650, 191, 17, 1
Offset: 1

Views

Author

Johannes W. Meijer, Oct 05 2009

Keywords

Comments

The higher order exponential integrals E(x,m,n) are defined in A163931. The asymptotic expansion of the E(x,m=2,n) ~ (exp(-x)/x^2)*(1 - (1+2*n)/x + (2+6*n+3*n^2)/x^2 - (6+22*n+18*n^2+ 4*n^3)/x^3 + ... ) is discussed in A028421. The formula for the asymptotic expansion leads for n = 1, 2, 3, .., to the left hand columns of the triangle given above.
The recurrence relations of the right hand columns of this triangle lead to Pascal's triangle A007318, their a(n) formulas lead to Wiggen's triangle A028421 and their o.g.f.s lead to Wood's polynomials A126671; cf. A080663, A165676, A165677, A165678 and A165679.
The row sums of this triangle lead to A093344. Surprisingly the e.g.f. of the row sums Egf(x) = (exp(1)*Ei(1,1-x) - exp(1)*Ei(1,1))/(1-x) leads to the exponential integrals in view of the fact that E(x,m=1,n=1) = Ei(n=1,x). We point out that exp(1)*Ei(1,1) = A073003.
The Maple programs generate the coefficients of the triangle given above. The first one makes use of a relation between the triangle coefficients, see the formulas, and the second one makes use of the asymptotic expansions of the E(x,m=2,n).
Amarnath Murthy discovered triangle A093905 which is the reversal of our triangle.
A165675 is an extended version of this triangle. Its reversal is A105954.
Triangle A094587 is generated by the asymptotic expansions of E(x,m=1,n).

Crossrefs

A093905 is the reversal of this triangle.
A000254, A001705, A001711, A001716, A001721, A051524, A051545, A051560, A051562, A051564 are the first ten left hand columns.
A080663, n>=2, is the third right hand column.
A165676, A165677, A165678 and A165679 are the next right hand columns, A093344 gives the row sums.
A073003 is Gompertz's constant.
A094587 is generated by the asymptotic expansions of E(x, m=1, n).
Cf. A165675, A105954 (Quet) and A067176 (Bottomley).
Cf. A007318 (Pascal), A028421 (Wiggen), A126671 (Wood).

Programs

  • Maple
    nmax:=9; for n from 1 to nmax do a(n, n) := 1 od: for n from 2 to nmax do a(n, 1) := n*a(n-1, 1) + (n-1)! od: for n from 3 to nmax do for m from 2 to n-1 do a(n, m) := (n-m+1)*a(n-1, m) + a(n-1, m-1) od: od: seq(seq(a(n, m), m = 1..n), n = 1..nmax);
    # End program 1
    nmax := nmax+1: m:=2; with(combinat): EA := proc(x, m, n) local E, i; E:=0: for i from m-1 to nmax+2 do E := E + sum((-1)^(m+k1+1) * binomial(k1, m-1) * n^(k1-m+1) * stirling1(i, k1), k1=m-1..i) / x^(i-m+1) od: E:= exp(-x)/x^(m) * E: return(E); end: for n1 from 1 to nmax do f(n1-1) := simplify(exp(x) * x^(nmax+3) * EA(x, m, n1)); for m1 from 0 to nmax+2 do b(n1-1, m1) := coeff(f(n1-1), x, nmax+2-m1) od: od: for n1 from 0 to nmax-1 do for m1 from 0 to n1-m+1 do a(n1-m+2, m1+1) := abs(b(m1, n1-m1)) od: od: seq(seq(a(n, m), m = 1..n),n = 1..nmax-1);
    # End program 2
    # Maple programs revised by Johannes W. Meijer, Sep 22 2012

Formula

a(n,m) = (n-m+1)*a(n-1,m) + a(n-1,m-1), for 2 <= m <= n-1, with a(n,n) = 1 and a(n,1) = n*a(n-1,1) + (n-1)!.
a(n,m) = product(i, i= m..n)*sum(1/i, i = m..n).

A248669 Triangular array of coefficients of polynomials q(n,k) defined in Comments.

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 16, 17, 7, 1, 65, 84, 45, 11, 1, 326, 485, 309, 100, 16, 1, 1957, 3236, 2339, 909, 196, 22, 1, 13700, 24609, 19609, 8702, 2281, 350, 29, 1, 109601, 210572, 181481, 89225, 26950, 5081, 582, 37, 1, 986410, 2004749, 1843901, 984506, 331775
Offset: 1

Views

Author

Clark Kimberling, Oct 11 2014

Keywords

Comments

q(n,x) = 1 + k+x + (k+x)(k-1+x) + (k+x)(k-1+x)(k-2+x) + ... + (k+x)(k-1+x)(k-2+x)...(1+x). The arrays at A248229 and A248664 have the same first column, given by A000522(n) for n >= 0. The alternating row sums of the array at A248669 are also given by A000522; viz., q(n,-1) = q(n-1,0) = A000522(n-2) for n >= 2. Column 2 of A248669 is given by A093344(n) for n >= 1.

Examples

			The first six polynomials:
p(1,x) = 1
p(2,x) = 2 + x
p(3,x) = 5 + 4 x + x^2
p(4,x) = 16 + 17 x + 7 x^2 + x^3
p(5,x) = 65 + 8 x + 45 x^2 + 11 x^3 + x^4
p(6,x) = 326 + 485 x + 309 x^2 + 100 x^3 + 16 x^4 + x^5
First six rows of the triangle:
1
2     1
5     4     1
16    17    7    1
65    84    45   11    1
326   485  309   100   16   1
		

Crossrefs

Programs

  • Mathematica
    t[x_, n_, k_] := t[x, n, k] = Product[x + n - i, {i, 1, k}];
    q[x_, n_] := Sum[t[x, n, k], {k, 0, n - 1}];
    TableForm[Table[q[x, n], {n, 1, 6}]];
    TableForm[Table[Factor[q[x, n]], {n, 1, 6}]];
    c[n_] := c[n] = CoefficientList[q[x, n], x];
    TableForm[Table[c[n], {n, 1, 12}]] (* A248669 array *)
    Flatten[Table[c[n], {n, 1, 12}]]   (* A248669 sequence *)

Formula

q(n,x) = (x + n - 1)*q(n-1,x) + 1, with q(1,x) = 1.

A093905 Triangle read by rows: for 0 <= k < n, a(n, k) is the sum of the products of all subsets of {n-k, n-k+1, ..., n} with k members.

Original entry on oeis.org

1, 1, 3, 1, 5, 11, 1, 7, 26, 50, 1, 9, 47, 154, 274, 1, 11, 74, 342, 1044, 1764, 1, 13, 107, 638, 2754, 8028, 13068, 1, 15, 146, 1066, 5944, 24552, 69264, 109584, 1, 17, 191, 1650, 11274, 60216, 241128, 663696, 1026576, 1, 19, 242, 2414, 19524, 127860
Offset: 1

Views

Author

Amarnath Murthy, Apr 24 2004

Keywords

Comments

Triangle A165674, which is the reversal of this triangle, is generated by the asymptotic expansion of the higher order exponential integral E(x,m=2,n). - Johannes W. Meijer, Oct 16 2009

Examples

			Triangle begins:
1
1 3
1 5 11
1 7 26 50
1 9 47 154 274
...
a(5, 3) = 4*3*2+5*3*2+5*4*2+5*4*3 = 154.
		

Crossrefs

The leading diagonal is given by A000254, Stirling numbers of first kind. The next nine diagonals are A001705, A001711, A001716, A001721, A051524, A051545, A051560, A051562 and A051564, generalized Stirling numbers.
A165674 is the reversal of this triangle. - Johannes W. Meijer, Oct 16 2009

Programs

  • Mathematica
    T[n_, 0] := 1; T[n_, k_]:= Product[i, {i, n - k, n}]*Sum[1/i, {i, n - k, n}]; Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] (* G. C. Greubel, Jan 21 2017 *)
  • PARI
    a(n, k) = prod(i=n-k, n, i)*sum(i=n-k,n,1/i);
    tabl(nn) = for (n=1, nn, for (k=0, n-1, print1(a(n,k), ", ")); print()); \\ Michel Marcus, Jan 21 2017

Formula

a(n, k) = (Product_{i=n-k..n} i)*(Sum_{i=n-k..n} 1/i), where a(n, 0) = 1.
a(n, k) = A067176(n, n-k-1) = A105954(k+1, n-k). Row sums are given by A093344.

Extensions

Edited and extended by David Wasserman, Apr 24 2007

A093345 a(n) = n! * {1 + Sum[i=1..n, 1/i*Sum(j=0..i-1, 1/j!)]}.

Original entry on oeis.org

1, 2, 6, 23, 108, 605, 3956, 29649, 250892, 2367629, 24662700, 281153801, 3482350724, 46572620757, 668943488084, 10271127486065, 167892667249116, 2911049382788189, 53365747562592092, 1031352659792534169
Offset: 0

Views

Author

Ralf Stephan, Apr 26 2004

Keywords

Comments

Number of {12,2*1}-avoiding signed permutations in the hyperoctahedral group B_n.

Crossrefs

Cf. A000774.
Contribution from Johannes W. Meijer, Oct 16 2009: (Start)
Equals row sums of A165675.
(End)

Programs

  • Mathematica
    a[n_] := n! (1+Sum[1/i Sum[1/j!, {j, 0, i-1}], {i, 1, n}])
    Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Oct 05 2018 *)
  • PARI
    a(n)=n!+n!*sum(i=1,n,1/i*sum(j=0,i-1,1/j!))

Formula

E.g.f.: (exp(1)*(Ei(1, 1-x)-Ei(1, 1))+1)/(1-x). a(n) = n!*(1+Sum(A000522(i-1)/i!, i =1..n)). - Vladeta Jovovic, Apr 27 2004
Conjecture: a(n) -2*n*a(n-1) +(n^2-2)*a(n-2) -(n-2)^2*a(n-3)=0. - R. J. Mathar, May 30 2014

A381681 a(n) is one of two integer components (with A000254) used in computing the inverse second moment of X+n, where X~Poisson(1).

Original entry on oeis.org

0, 1, 2, 7, 30, 159, 998, 7251, 59862, 553591, 5669406, 63698427, 779065694, 10304068863, 146547757014, 2230287456259, 36165665815878, 622513383121671, 11336090988469742, 217741030441959051, 4399571340398826126, 93286012779568250767, 2071087588405552461414, 48048511292938827392403
Offset: 0

Views

Author

Michael R. Powers, Mar 05 2025

Keywords

Comments

Analog of A093344 (with alternating terms in inner summation).

Examples

			If X~Poisson(1), then E[(X+n)^(-2)] = (-1)^n * {(n-1)! * [-Ei(1)+gamma] - A000254(n-1) + e*a(n-1)}/e for n = 1,2,... where gamma is Euler's constant.
		

Crossrefs

A093344 gives one of two integer components (with A000254) used in computing the alternating inverse second moment of X+n for X~Poisson(1).

Programs

  • PARI
    a(n) = n! * sum(i=1, n, (1/i)*sum(j=0, i-1, (-1)^j/j!)); \\ Michel Marcus, Mar 07 2025

Formula

a(n) = n! * Sum_{i=1..n} (1/i)*Sum_{j=0..i-1} (-1)^j/j!.
Showing 1-6 of 6 results.