A093904 Duplicate of A093344.
0, 1, 4, 17, 84, 485, 3236, 24609, 210572, 2004749, 21033900, 241237001
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
nmax:=9; for n from 1 to nmax do a(n, n) := 1 od: for n from 2 to nmax do a(n, 1) := n*a(n-1, 1) + (n-1)! od: for n from 3 to nmax do for m from 2 to n-1 do a(n, m) := (n-m+1)*a(n-1, m) + a(n-1, m-1) od: od: seq(seq(a(n, m), m = 1..n), n = 1..nmax); # End program 1 nmax := nmax+1: m:=2; with(combinat): EA := proc(x, m, n) local E, i; E:=0: for i from m-1 to nmax+2 do E := E + sum((-1)^(m+k1+1) * binomial(k1, m-1) * n^(k1-m+1) * stirling1(i, k1), k1=m-1..i) / x^(i-m+1) od: E:= exp(-x)/x^(m) * E: return(E); end: for n1 from 1 to nmax do f(n1-1) := simplify(exp(x) * x^(nmax+3) * EA(x, m, n1)); for m1 from 0 to nmax+2 do b(n1-1, m1) := coeff(f(n1-1), x, nmax+2-m1) od: od: for n1 from 0 to nmax-1 do for m1 from 0 to n1-m+1 do a(n1-m+2, m1+1) := abs(b(m1, n1-m1)) od: od: seq(seq(a(n, m), m = 1..n),n = 1..nmax-1); # End program 2 # Maple programs revised by Johannes W. Meijer, Sep 22 2012
The first six polynomials: p(1,x) = 1 p(2,x) = 2 + x p(3,x) = 5 + 4 x + x^2 p(4,x) = 16 + 17 x + 7 x^2 + x^3 p(5,x) = 65 + 8 x + 45 x^2 + 11 x^3 + x^4 p(6,x) = 326 + 485 x + 309 x^2 + 100 x^3 + 16 x^4 + x^5 First six rows of the triangle: 1 2 1 5 4 1 16 17 7 1 65 84 45 11 1 326 485 309 100 16 1
t[x_, n_, k_] := t[x, n, k] = Product[x + n - i, {i, 1, k}]; q[x_, n_] := Sum[t[x, n, k], {k, 0, n - 1}]; TableForm[Table[q[x, n], {n, 1, 6}]]; TableForm[Table[Factor[q[x, n]], {n, 1, 6}]]; c[n_] := c[n] = CoefficientList[q[x, n], x]; TableForm[Table[c[n], {n, 1, 12}]] (* A248669 array *) Flatten[Table[c[n], {n, 1, 12}]] (* A248669 sequence *)
Triangle begins: 1 1 3 1 5 11 1 7 26 50 1 9 47 154 274 ... a(5, 3) = 4*3*2+5*3*2+5*4*2+5*4*3 = 154.
T[n_, 0] := 1; T[n_, k_]:= Product[i, {i, n - k, n}]*Sum[1/i, {i, n - k, n}]; Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] (* G. C. Greubel, Jan 21 2017 *)
a(n, k) = prod(i=n-k, n, i)*sum(i=n-k,n,1/i); tabl(nn) = for (n=1, nn, for (k=0, n-1, print1(a(n,k), ", ")); print()); \\ Michel Marcus, Jan 21 2017
a[n_] := n! (1+Sum[1/i Sum[1/j!, {j, 0, i-1}], {i, 1, n}]) Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Oct 05 2018 *)
a(n)=n!+n!*sum(i=1,n,1/i*sum(j=0,i-1,1/j!))
If X~Poisson(1), then E[(X+n)^(-2)] = (-1)^n * {(n-1)! * [-Ei(1)+gamma] - A000254(n-1) + e*a(n-1)}/e for n = 1,2,... where gamma is Euler's constant.
a(n) = n! * sum(i=1, n, (1/i)*sum(j=0, i-1, (-1)^j/j!)); \\ Michel Marcus, Mar 07 2025
Comments