cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A001705 Generalized Stirling numbers: a(n) = n! * Sum_{k=0..n-1} (k+1)/(n-k).

Original entry on oeis.org

0, 1, 5, 26, 154, 1044, 8028, 69264, 663696, 6999840, 80627040, 1007441280, 13575738240, 196287356160, 3031488633600, 49811492505600, 867718162483200, 15974614352793600, 309920046408806400, 6320046028584960000, 135153868608460800000, 3024476051557847040000
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the sum of the positions of the right-to-left minima in all permutations of [n]. Example: a(3)=26 because the positions of the right-to-left minima in the permutations 123,132,213,231,312 and 321 are 123, 13, 23, 3, 23 and 3, respectively and 1 + 2 + 3 + 1 + 3 + 2 + 3 + 3 + 2 + 3 + 3 = 26. - Emeric Deutsch, Sep 22 2008
The asymptotic expansion of the higher order exponential integral E(x,m=2,n=2) ~ exp(-x)/x^2*(1 - 5/x + 26/x^2 - 154/x^3 + 1044/x^4 - 8028/x^5 + 69264/x^6 - ...) leads to the sequence given above. See A163931 and A028421 for more information. - Johannes W. Meijer, Oct 20 2009
a(n) is the total number of cycles (excluding fixed points) in all permutations of [n+1]. - Olivier Gérard, Oct 23 2012; Dec 31 2012
A length n sequence is formed by randomly selecting (one-by-one) n real numbers in (0,1). a(n)/(n+1)! is the expected value of the sum of the new maximums in such a sequence. For example for n=3: If we select (in this order): 0.591996, 0.646474, 0.163659 we would add 0.591996 + 0.646474 which would be a bit above the average of a(3)/4! = 26/24. - Geoffrey Critzer, Oct 17 2013

Examples

			(1-x)^-2 * (-log(1-x)) = x + 5/2*x^2 + 13/3*x^3 + 77/12*x^4 + ...
Examples: a(6) = 6!*(1/6 + 2/5 + 3/4 + 4/3 + 5/2 + 6/1) = 8028; a(20) = 20!*(1/20 + 2/19 + 3/18 + 4/17 + 5/16 + ... + 16/5 + 17/4 + 18/3 + 19/2 + 20/1) = 135153868608460800000. - _Alexander Adamchuk_, Oct 09 2004
From _Olivier Gérard_, Dec 31 2012: (Start)
The cycle decomposition of all permutations of 4 elements gives the following list: {{{1},{2},{3},{4}}, {{1},{2},{3,4}}, {{1},{2,3},{4}}, {{1},{2,4,3}}, {{1},{2,3,4}}, {{1},{2,4},{3}}, {{1,2},{3},{4}}, {{1,2},{3,4}}, {{1,3,2},{4}},{{1,4,3,2}}, {{1,3,4,2}}, {{1,4,2},{3}}, {{1,2,3},{4}}, {{1,2,4,3}},{{1,3},{2},{4}}, {{1,4,3},{2}}, {{1,3},{2,4}}, {{1,4,2,3}}, {{1,2,3,4}}, {{1,2,4},{3}}, {{1,3,4},{2}}, {{1,4},{2},{3}}, {{1,3,2,4}}, {{1,4},{2,3}}}.
Deleting the fixed points gives the following 26 items: {{3,4}, {2,3}, {2,4,3}, {2,3,4}, {2,4}, {1,2}, {1,2}, {3,4}, {1,3,2}, {1,4,3,2}, {1,3,4,2}, {1,4,2}, {1,2,3}, {1,2,4,3}, {1,3}, {1,4,3}, {1,3}, {2,4}, {1,4,2,3}, {1,2,3,4}, {1,2,4}, {1,3,4}, {1,4}, {1,3,2,4}, {1,4}, {2,3}}. (End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000254 (total number of cycles in permutations, including fixed points).
Cf. A002104 (number of different cycles in permutations, without fixed points).
Cf. A006231 (number of different cycles in permutations, including fixed points).
Related to n!*the k-th successive summation of the harmonic numbers:
(k=0) A000254, (k=1) A001705, (k=2) A001711, (k=3) A001716,
(k=4) A001721, (k=5) A051524, (k=6) A051545, (k=7) A051560,
(k=8) A051562, (k=9) A051564.

Programs

  • Maple
    a := n-> add((n+1)!/k, k=2..n+1): seq(a(n), n=0..21); # Zerinvary Lajos, Jan 22 2008; edited Johannes W. Meijer, Nov 28 2012
    a := n -> ((n+1)!*(h(n+1)-1)): h := n-> harmonic(n): seq(a(n), n=0..21); # Gary Detlefs, Dec 18 2009; corrected by Johannes W. Meijer, Nov 28 2012
  • Mathematica
    Table[n!*Sum[Sum[1/k,{k,1,m}], {m,1,n}], {n,0,20}] (* Alexander Adamchuk, Apr 14 2006 *)
    a[n_] := (n + 1)! (EulerGamma - 1 + PolyGamma[n + 2]);
    Table[a[n], {n, 0, 21}] (* Peter Luschny, Feb 19 2022 *)
  • Maxima
    a(n):=n!*sum(((-1)^(k+1)*binomial(n+1,k+1))/k,k,1,n); /* Vladimir Kruchinin, Oct 10 2016 */
    
  • PARI
    for(n=0,25, print1(n!*sum(k=0,n-1,(k+1)/(n-k)), ", ")) \\ G. C. Greubel, Jan 20 2017
    
  • Python
    from math import factorial
    def A001705(n):
        f = factorial(n)
        return sum(f*(k+1)//(n-k) for k in range(n)) # Chai Wah Wu, Jun 23 2022

Formula

Partial sum of first n harmonic numbers multiplied by n!.
a(n) = n!*Sum_{m=1..n} Sum_{k=1..m} 1/k = n!*Sum_{m=1..n} H(m), where H(m) = Sum_{k=1..m} 1/k = A001008(m)/A002805(m) is m-th Harmonic number.
E.g.f.: - log (1 - x) / (1 - x)^2.
a(n) = (n+1)! * H(n) - n*n!, H(n) = Sum_{k=1..n} (1/k).
a(n) = A112486(n, 1).
a(n) = a(n-1)*(n+1) + n! = A000254(n+1) - A000142(n+1) = A067176(n+1, 1). - Henry Bottomley, Jan 09 2002
a(n) = Sum_{k=0..n-1} ((-1)^(n-1+k) * (k+1) * 2^k * Stirling1(n, k+1)). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
With alternating signs: Ramanujan polynomials psi_2(n, x) evaluated at 0. - Ralf Stephan, Apr 16 2004
a(n) = Sum_{k=1..n} (k*StirlingCycle(n+1,k+1)). - David Callan, Sep 25 2006
a(n) = Sum_{k=n..n*(n+1)/2} k*A143947(n,k). - Emeric Deutsch, Sep 22 2008
For n >= 1, a(n) = Sum_{j=0..n-1} ((-1)^(n-j-1) * 2^j * (j+1) * Stirling1(n,j+1)). - Milan Janjic, Dec 14 2008
a(n) = (2*n+1)*a(n-1) - n^2*a(n-2). - Gary Detlefs, Nov 27 2009
a(n) = (n+1)!*(H(n+1) - 1) where H(n) is the n-th harmonic number. - Gary Detlefs, Dec 18 2009
a(n) = n!*Sum_{k=1..n} (-1)^(k+1)*binomial(n+1,k+1)/k. - Vladimir Kruchinin, Oct 10 2016
a(n) = (n+1)!*Sum_{k = 1..n} (-1)^(k+1)*binomial(n+1,k+1)*k/(k+1). - Peter Bala, Feb 15 2022
a(n) = Gamma(n + 2) * (Digamma(n + 2) + EulerGamma - 1). - Peter Luschny, Feb 19 2022
From Mélika Tebni, Jun 22 2022: (Start)
a(n) = -Sum_{k=0..n} k!*A066667(n, k+1).
a(n) = Sum_{k=0..n} k!*A132159(n, k+1). (End)
a(n) = n*(n + 1)!*hypergeom([1, 1, 1 - n], [2, 3], 1)/2. - Peter Luschny, Jun 22 2022

Extensions

More terms from Sascha Kurz, Mar 22 2002

A165674 Triangle generated by the asymptotic expansions of the E(x,m=2,n).

Original entry on oeis.org

1, 3, 1, 11, 5, 1, 50, 26, 7, 1, 274, 154, 47, 9, 1, 1764, 1044, 342, 74, 11, 1, 13068, 8028, 2754, 638, 107, 13, 1, 109584, 69264, 24552, 5944, 1066, 146, 15, 1, 1026576, 663696, 241128, 60216, 11274, 1650, 191, 17, 1
Offset: 1

Views

Author

Johannes W. Meijer, Oct 05 2009

Keywords

Comments

The higher order exponential integrals E(x,m,n) are defined in A163931. The asymptotic expansion of the E(x,m=2,n) ~ (exp(-x)/x^2)*(1 - (1+2*n)/x + (2+6*n+3*n^2)/x^2 - (6+22*n+18*n^2+ 4*n^3)/x^3 + ... ) is discussed in A028421. The formula for the asymptotic expansion leads for n = 1, 2, 3, .., to the left hand columns of the triangle given above.
The recurrence relations of the right hand columns of this triangle lead to Pascal's triangle A007318, their a(n) formulas lead to Wiggen's triangle A028421 and their o.g.f.s lead to Wood's polynomials A126671; cf. A080663, A165676, A165677, A165678 and A165679.
The row sums of this triangle lead to A093344. Surprisingly the e.g.f. of the row sums Egf(x) = (exp(1)*Ei(1,1-x) - exp(1)*Ei(1,1))/(1-x) leads to the exponential integrals in view of the fact that E(x,m=1,n=1) = Ei(n=1,x). We point out that exp(1)*Ei(1,1) = A073003.
The Maple programs generate the coefficients of the triangle given above. The first one makes use of a relation between the triangle coefficients, see the formulas, and the second one makes use of the asymptotic expansions of the E(x,m=2,n).
Amarnath Murthy discovered triangle A093905 which is the reversal of our triangle.
A165675 is an extended version of this triangle. Its reversal is A105954.
Triangle A094587 is generated by the asymptotic expansions of E(x,m=1,n).

Crossrefs

A093905 is the reversal of this triangle.
A000254, A001705, A001711, A001716, A001721, A051524, A051545, A051560, A051562, A051564 are the first ten left hand columns.
A080663, n>=2, is the third right hand column.
A165676, A165677, A165678 and A165679 are the next right hand columns, A093344 gives the row sums.
A073003 is Gompertz's constant.
A094587 is generated by the asymptotic expansions of E(x, m=1, n).
Cf. A165675, A105954 (Quet) and A067176 (Bottomley).
Cf. A007318 (Pascal), A028421 (Wiggen), A126671 (Wood).

Programs

  • Maple
    nmax:=9; for n from 1 to nmax do a(n, n) := 1 od: for n from 2 to nmax do a(n, 1) := n*a(n-1, 1) + (n-1)! od: for n from 3 to nmax do for m from 2 to n-1 do a(n, m) := (n-m+1)*a(n-1, m) + a(n-1, m-1) od: od: seq(seq(a(n, m), m = 1..n), n = 1..nmax);
    # End program 1
    nmax := nmax+1: m:=2; with(combinat): EA := proc(x, m, n) local E, i; E:=0: for i from m-1 to nmax+2 do E := E + sum((-1)^(m+k1+1) * binomial(k1, m-1) * n^(k1-m+1) * stirling1(i, k1), k1=m-1..i) / x^(i-m+1) od: E:= exp(-x)/x^(m) * E: return(E); end: for n1 from 1 to nmax do f(n1-1) := simplify(exp(x) * x^(nmax+3) * EA(x, m, n1)); for m1 from 0 to nmax+2 do b(n1-1, m1) := coeff(f(n1-1), x, nmax+2-m1) od: od: for n1 from 0 to nmax-1 do for m1 from 0 to n1-m+1 do a(n1-m+2, m1+1) := abs(b(m1, n1-m1)) od: od: seq(seq(a(n, m), m = 1..n),n = 1..nmax-1);
    # End program 2
    # Maple programs revised by Johannes W. Meijer, Sep 22 2012

Formula

a(n,m) = (n-m+1)*a(n-1,m) + a(n-1,m-1), for 2 <= m <= n-1, with a(n,n) = 1 and a(n,1) = n*a(n-1,1) + (n-1)!.
a(n,m) = product(i, i= m..n)*sum(1/i, i = m..n).

A105954 Array read by descending antidiagonals: A(n, k) = (n + 1)! * H(k, n + 1), where H(n, k) is a higher-order harmonic number, H(0, k) = 1/k and H(n, k) = Sum_{j=1..k} H(n-1, j), for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 5, 11, 6, 1, 7, 26, 50, 24, 1, 9, 47, 154, 274, 120, 1, 11, 74, 342, 1044, 1764, 720, 1, 13, 107, 638, 2754, 8028, 13068, 5040, 1, 15, 146, 1066, 5944, 24552, 69264, 109584, 40320, 1, 17, 191, 1650, 11274, 60216, 241128, 663696, 1026576, 362880
Offset: 0

Views

Author

Leroy Quet, Jun 26 2005

Keywords

Comments

Antidiagonal sums are A093345 (n! * (1 + Sum_{i=1..n}((1/i)*Sum_{j=0..i-1} 1/j!))). - Gerald McGarvey, Aug 27 2005
A recasting of A093905 and A067176. - R. J. Mathar, Mar 01 2009
The triangular array of this sequence is the reversal of A165675 which is related to the asymptotic expansion of the higher order exponential integral E(x,m=2,n); see also A165674. - Johannes W. Meijer, Oct 16 2009

Examples

			A(2, 2) = (1 + (1 + 1/2) + (1 + 1/2 + 1/3))*6 = 26.
Array A(n, k) begins:
  [n\k]  0       1       2        3        4        5          6
  -------------------------------------------------------------------
  [0]    1,      1,      1,       1,       1,       1,         1, ...
  [1]    1,      3,      5,       7,       9,       11,       13, ...
  [2]    2,     11,     26,      47,      74,      107,      146, ...
  [3]    6,     50,    154,     342,     638,     1066,     1650, ...
  [4]   24,    274,   1044,    2754,    5944,    11274,    19524, ...
  [5]  120,   1764,   8028,   24552,   60216,   127860,   245004, ...
  [6]  720,  13068,  69264,  241128,  662640,  1557660,  3272688, ...
  [7] 5040, 109584, 663696, 2592720, 7893840, 20355120, 46536624, ...
		

Crossrefs

Column 0 = A000142 (factorial numbers).
Column 1 = A000254 (Stirling numbers of first kind s(n, 2)) starting at n=1.
Column 2 = A001705 (Generalized Stirling numbers: a(n) = n!*Sum_{k=0..n-1}(k+1)/(n-k)), starting at n=1.
Column 3 = A001711 (Generalized Stirling numbers: a(n) = Sum_{k=0..n}(-1)^(n+k)*(k+1)*3^k*stirling1(n+1, k+1)).
Column 4 = A001716 (Generalized Stirling numbers: a(n) = Sum_{k=0..n}(-1)^(n+k)*(k+1)*4^k*stirling1(n+1, k+1)).
Column 5 = A001721 (Generalized Stirling numbers: a(n) = Sum_{k=0..n}(-1)^(n+k)*binomial(k+1, 1)*5^k*stirling1(n+1, k+1)).
Column 6 = A051524 (2nd unsigned column of A051338) starting at n=1.
Column 7 = A051545 (2nd unsigned column of A051339) starting at n=1.
Column 8 = A051560 (2nd unsigned column of A051379) starting at n=1.
Column 9 = A051562 (2nd unsigned column of A051380) starting at n=1.
Column 10= A051564 (2nd unsigned column of A051523) starting at n=1.
2nd row is A005408 (2n - 1, starting at n=1).
3rd row is A080663 (3n^2 - 1, starting at n=1).
Main diagonal gives A384024.

Programs

  • Maple
    H := proc(n, k) option remember; if n = 0 then 1/k else add(H(n - 1, j), j = 1..k) fi end: A := (n, k) -> (n + 1)!*H(k, n + 1):
    # Alternative with standard harmonic number:
    A := (n, k) -> if k = 0 then n! else (harmonic(n + k) - harmonic(k - 1))*(n + k)! / (k - 1)! fi:
    for n from 0 to 7 do seq(A(n, k), k = 0..6) od;
    # Alternative with hypergeometric formula:
    A := (n, k) -> (n+1)*((n + k)! / k!)*hypergeom([-n, 1, 1], [2, k+1], 1):
    seq(print(seq(simplify(A(n, k)), k = 0..6)), n=0..7); # Peter Luschny, Jul 01 2022
  • Mathematica
    H[0, m_] := 1/m; H[n_, m_] := Sum[H[n - 1, k], {k, m}]; a[n_, m_] := m!H[n, m]; Flatten[ Table[ a[i, n - i], {n, 10}, {i, n - 1, 0, -1}]]
    Table[ a[n, m], {m, 8}, {n, 0, m + 1}] // TableForm (* to view the table *)
    (* Robert G. Wilson v, Jun 27 2005 *)
  • PARI
    a(n, k) = polcoef(prod(j=0, n, 1+(j+k)*x), n); \\ Seiichi Manyama, May 19 2025

Formula

A(n, k) = (Harmonic(n + k) - Harmonic(k - 1))*(n + k)!/(k - 1)! if k > 0, otherwise n!.
From Gerald McGarvey, Aug 27 2005, edited by Peter Luschny, Jul 02 2022: (Start)
E.g.f. for column k: -log(1 - x)/(x*(1 - x)^k).
Row 3 is r(n) = 4*n^3 + 18*n^2 + 22*n + 6.
Row 4 is r(n) = 5*n^4 + 40*n^3 + 105*n^2 + 100*n + 24.
Row 5 is r(n) = 6*n^5 + 75*n^4 + 340*n^3 + 675*n^2 + 548*n + 120.
Row 6 is r(n) = 7*n^6 + 126*n^5 + 875*n^4 + 2940*n^3 + 4872*n^2 + 3528*n + 720.
Row 7 is r(n) = 8*n^7 + 196*n^6 + 1932*n^5 + 9800*n^4 + 27076*n^3 + 39396*n^2 + 26136*n + 5040.
The sum of the polynomial coefficients for the n-th row is |S1(n, 2)|, which are the unsigned Stirling1 numbers which appear in column 1.
A(m, n) = Sum_{k=1..m} n*A094645(m, n)*(n+1)^(k-1). (A094645 is Generalized Stirling number triangle of first kind, e.g.f.: (1-y)^(1-x).) (End)
In Gerard McGarvey's formulas for the row coefficients we find Wiggen's triangle A028421 and their o.g.f.s lead to Wood's polynomials A126671; see A165674. - Johannes W. Meijer, Oct 16 2009
A(n, k) = (n + 1)*((n + k)! / k!)*hypergeom([-n, 1, 1], [2, k + 1], 1). - Peter Luschny, Jul 01 2022
A(n,k) = [x^n] Product_{j=0..n} (1 + (j+k)*x). - Seiichi Manyama, May 19 2025

Extensions

More terms from Robert G. Wilson v, Jun 27 2005
Edited by Peter Luschny, Jul 02 2022

A093905 Triangle read by rows: for 0 <= k < n, a(n, k) is the sum of the products of all subsets of {n-k, n-k+1, ..., n} with k members.

Original entry on oeis.org

1, 1, 3, 1, 5, 11, 1, 7, 26, 50, 1, 9, 47, 154, 274, 1, 11, 74, 342, 1044, 1764, 1, 13, 107, 638, 2754, 8028, 13068, 1, 15, 146, 1066, 5944, 24552, 69264, 109584, 1, 17, 191, 1650, 11274, 60216, 241128, 663696, 1026576, 1, 19, 242, 2414, 19524, 127860
Offset: 1

Views

Author

Amarnath Murthy, Apr 24 2004

Keywords

Comments

Triangle A165674, which is the reversal of this triangle, is generated by the asymptotic expansion of the higher order exponential integral E(x,m=2,n). - Johannes W. Meijer, Oct 16 2009

Examples

			Triangle begins:
1
1 3
1 5 11
1 7 26 50
1 9 47 154 274
...
a(5, 3) = 4*3*2+5*3*2+5*4*2+5*4*3 = 154.
		

Crossrefs

The leading diagonal is given by A000254, Stirling numbers of first kind. The next nine diagonals are A001705, A001711, A001716, A001721, A051524, A051545, A051560, A051562 and A051564, generalized Stirling numbers.
A165674 is the reversal of this triangle. - Johannes W. Meijer, Oct 16 2009

Programs

  • Mathematica
    T[n_, 0] := 1; T[n_, k_]:= Product[i, {i, n - k, n}]*Sum[1/i, {i, n - k, n}]; Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] (* G. C. Greubel, Jan 21 2017 *)
  • PARI
    a(n, k) = prod(i=n-k, n, i)*sum(i=n-k,n,1/i);
    tabl(nn) = for (n=1, nn, for (k=0, n-1, print1(a(n,k), ", ")); print()); \\ Michel Marcus, Jan 21 2017

Formula

a(n, k) = (Product_{i=n-k..n} i)*(Sum_{i=n-k..n} 1/i), where a(n, 0) = 1.
a(n, k) = A067176(n, n-k-1) = A105954(k+1, n-k). Row sums are given by A093344.

Extensions

Edited and extended by David Wasserman, Apr 24 2007

A071417 Triangle of expected coupon collection numbers rounded up; i.e., if aiming to collect part of a set of n coupons, the expected number of random coupons required to receive first the set with exactly k missing.

Original entry on oeis.org

0, 1, 0, 3, 1, 0, 6, 3, 1, 0, 9, 5, 3, 1, 0, 12, 7, 4, 3, 1, 0, 15, 9, 6, 4, 3, 1, 0, 19, 12, 8, 6, 4, 3, 1, 0, 22, 14, 10, 8, 6, 4, 3, 1, 0, 26, 17, 12, 9, 7, 5, 4, 3, 1, 0, 30, 20, 15, 11, 9, 7, 5, 4, 3, 1, 0, 34, 23, 17, 14, 11, 9, 7, 5, 4, 3, 1, 0, 38, 26, 20, 16, 13, 10, 8, 7, 5, 4, 3, 1, 0, 42
Offset: 0

Views

Author

Henry Bottomley, May 29 2002

Keywords

Examples

			Rows start
0;
1,0;
3,1,0;
6,3,1,0;
9,5,3,1,0;
etc.
		

Crossrefs

Cf. A060293 (left hand column), A067176.

Programs

  • Mathematica
    Table[Ceiling[n Sum[1/j, {j, k + 1, n}]], {n, 0, 12}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jul 30 2017 *)

Formula

a(n, k) = ceiling(n*Sum_{j=k+1..n} 1/j) = ceiling(A067176(n, k)*k!/(n-1)!) = ceiling(A008279(n, n-k)*Sum_{j>=n-k} j*A008277(j-1, n-k-1)/n^j).
Showing 1-5 of 5 results.