A274265
a(n) = (3*n - 1)^(n-1).
Original entry on oeis.org
1, 5, 64, 1331, 38416, 1419857, 64000000, 3404825447, 208827064576, 14507145975869, 1125899906842624, 96549157373046875, 9065737908494995456, 925103102315013629321, 101938319743841411792896, 12063348350820368238715343, 1525878906250000000000000000
Offset: 1
A274267
a(n) = (4*n - 1)^(n-1).
Original entry on oeis.org
1, 7, 121, 3375, 130321, 6436343, 387420489, 27512614111, 2251875390625, 208728361158759, 21611482313284249, 2472159215084012303, 309629344375621415601, 42141982597572021484375, 6193386212891813387462761, 977480813971145474830595007, 164890958756244164895763202881
Offset: 1
-
[(4*n-1)^(n-1): n in [1..25]]; // Vincenzo Librandi, Jun 20 2016
-
A274267 := n -> (4*n - 1)^(n-1):
seq(A274267(n), n = 1..20);
-
Table[(4*n-1)^(n-1), {n,1,25}] (* G. C. Greubel, Jun 19 2016 *)
-
for(n=1,30, print1((4*n-1)^(n-1), ", ")) \\ G. C. Greubel, Nov 16 2017
A274270
Expansion of e.g.f. (1 + x)^5*log(1 + x).
Original entry on oeis.org
1, 9, 47, 154, 274, 120, -120, 240, -720, 2880, -14400, 86400, -604800, 4838400, -43545600, 435456000, -4790016000, 57480192000, -747242496000, 10461394944000, -156920924160000, 2510734786560000, -42682491371520000, 768284844687360000, -14597412049059840000
Offset: 1
E.g.f.= x + 9*x^2/2 + 47*x^3/3! + 154*x^4/4! + 274*x^5/5! + 120*x^6/6! - 120*x^7/7! + ....
-
[1,9,47,154,274] cat [(-1)^n*120*Factorial(n - 6): n in [6..25]]; // Vincenzo Librandi, Jun 20 2016
-
CoefficientList[Series[(1+t)^5 * Log[1+t], {t,1,20}],t]*Range[1,20]! (* G. C. Greubel, Jun 19 2016 *)
A274268
Expansion of e.g.f. (1 + x)^4*log(1 + x).
Original entry on oeis.org
1, 7, 26, 50, 24, -24, 48, -144, 576, -2880, 17280, -120960, 967680, -8709120, 87091200, -958003200, 11496038400, -149448499200, 2092278988800, -31384184832000, 502146957312000, -8536498274304000, 153656968937472000, -2919482409811968000, 58389648196239360000
Offset: 1
E.g.f.= x + 7*x^2/2 + 26*x^3/3! + 50*x^4/4! + 24*x^5/5! - 24*x^6/6! + ...
-
[1,7,26,50] cat [(-1)^(n-1)*24*Factorial(n-5): n in [5..25]]; // Vincenzo Librandi, Jun 20 2016
-
CoefficientList[Series[(1+t)^4 * Log[1+t], {t, 1, 20}], t]*Range[1, 20]! (* G. C. Greubel, Jun 19 2016 *)
A298881
a(0) = 0; for n>0, a(n) = 6*n!.
Original entry on oeis.org
0, 6, 12, 36, 144, 720, 4320, 30240, 241920, 2177280, 21772800, 239500800, 2874009600, 37362124800, 523069747200, 7846046208000, 125536739328000, 2134124568576000, 38414242234368000, 729870602452992000, 14597412049059840000, 306545653030256640000
Offset: 0
-
Concatenation([0], List([1..25], n -> 6*Factorial(n))); # Bruno Berselli, Feb 13 2018
-
[n eq 0 select 0 else 6*Factorial(n): n in [0..25]];
-
Join[{0}, 6 Range[25]!]
-
a(n) = if (n, 6*n!, 0); \\ Michel Marcus, Feb 15 2018
Showing 1-5 of 5 results.
Comments