A105997 Semiprime function n -> A001358(n) applied three times to n.
26, 39, 74, 77, 118, 119, 178, 194, 219, 235, 299, 301, 329, 377, 381, 454, 471, 502, 535, 565, 566, 634, 679, 703, 721, 779, 842, 886, 893, 914, 973, 995, 998, 1006, 1126, 1174, 1227, 1282, 1294, 1317, 1337, 1343, 1389, 1418, 1457, 1563, 1577, 1623, 1642
Offset: 1
Examples
a(1) = semiprime(semiprime(semiprime(1))) = semiprime(semiprime(4)) = semiprime(10) = 26.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Maple
issp:= n-> not isprime(n) and numtheory[bigomega](n)=2: sp:= proc(n) option remember; local k; if n=1 then 4 else for k from 1+sp(n-1) while not issp(k) do od; k fi end: a:= n-> (sp@@3)(n): seq(a(n), n=1..49); # Alois P. Heinz, Aug 16 2024
-
Mathematica
f[n_] := Plus @@ Flatten[ Table[ # [[2]], {1}] & /@ FactorInteger[ n]]; t = Select[ Range[ 1700], f[ # ] == 2 &]; Table[ Nest[ t[[ # ]] &, n, 3], {n, 50}] (* Robert G. Wilson v, Apr 30 2005 *)
-
Python
from math import isqrt from sympy import primepi, primerange def A105997(n): def f(x,n): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1))) def A001358(n): m, k = n, f(n,n) while m != k: m, k = k, f(k,n) return m return A001358(A001358(A001358(n))) # Chai Wah Wu, Aug 16 2024
Extensions
Corrected and extended by Robert G. Wilson v, Apr 30 2005