cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105998 Semiprime function n -> A001358(n) applied four times to n.

Original entry on oeis.org

77, 119, 219, 235, 377, 381, 566, 634, 721, 779, 998, 1006, 1126, 1282, 1294, 1563, 1642, 1745, 1853, 1959, 1961, 2209, 2402, 2483, 2554, 2785, 3005, 3149, 3173, 3242, 3481, 3574, 3587, 3622, 4101, 4282, 4471, 4681, 4714, 4798, 4859, 4882, 5095, 5201
Offset: 1

Views

Author

Jonathan Vos Post, Apr 29 2005

Keywords

Examples

			a(1) = semiprime(semiprime(semiprime(semiprime(1)))) = semiprime(semiprime(semiprime(4))) = semiprime(semiprime(10)) = semiprime(26) = 77.
		

Crossrefs

Programs

  • Maple
    issp:= n-> not isprime(n) and numtheory[bigomega](n)=2:
    sp:= proc(n) option remember; local k; if n=1 then 4 else
           for k from 1+sp(n-1) while not issp(k) do od; k fi end:
    a:= n-> (sp@@4)(n):
    seq(a(n), n=1..44);  # Alois P. Heinz, Aug 16 2024
  • Mathematica
    f[n_] := Plus @@ Flatten[ Table[ # [[2]], {1}] & /@ FactorInteger[ n]]; t = Select[ Range[ 5210], f[ # ] == 2 &]; Table[ Nest[ t[[ # ]] &, n, 4], {n, 45}] (* Robert G. Wilson v, Apr 30 2005 *)
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A105998(n):
        def f(x): return int(x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
        def A001358(n):
            m, k = n, f(n)+n
            while m != k:
                m, k = k, f(k)+n
            return m
        return A001358(A001358(A001358(A001358(n)))) # Chai Wah Wu, Aug 16 2024

Formula

Extensions

More terms from Robert G. Wilson v, Apr 30 2005