A106002 a(n)=1 if there is a number of the form 6k+3 such that prime(n) < 6k+3 < prime(n+1), otherwise 0.
0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1
Offset: 1
Examples
a(3)=0 because between prime(3)=5 and prime(4)=7 there are no numbers of the form 6k+3; a(4)=1 because between prime(4)=7 and prime(5)=11 there is 9=6*1+3.
Links
- Karl-Heinz Hofmann, Table of n, a(n) for n = 1..10000
Crossrefs
Same as A100810 after first term.
Programs
-
Mathematica
Table[If[Prime[n]<6Ceiling[Prime[n]/6]+3
James C. McMahon, Jan 29 2024 *) -
PARI
a(n) = my(p=prime(n)); for(k=p+1, nextprime(p+1)-1, if (!((k-3) % 6), return(1))); \\ Michel Marcus, Jan 30 2024
-
Python
from sympy import sieve def A106002(n): for comp in range(sieve[n]+1, sieve[n+1]): if (comp-3) % 6 == 0: return 1 return 0 # Karl-Heinz Hofmann, Jan 30 2024
Extensions
Edited by Ray Chandler, Oct 17 2006
Comments