A106034 a(n) is the least number such that n*prime(n)+a(n) is a perfect cube.
6, 2, 12, 36, 9, 47, 6, 64, 9, 53, 2, 68, 196, 127, 24, 152, 328, 233, 58, 308, 195, 459, 288, 61, 319, 118, 594, 379, 214, 706, 159, 721, 392, 187, 617, 396, 23, 665, 346, 1080, 661, 398, 1048, 769, 396, 107, 731, 1463, 1044, 717, 284, 1396, 1051, 270, 1490, 897
Offset: 1
Keywords
Examples
a(10)=53 because 10*prime(10)+a(10) = 10*29 + 53 = 343 = 7^3.
Crossrefs
Cf. A014688.
Programs
-
Mathematica
f[n_] := (Ceiling[(n*Prime[n])^(1/3)])^3 - n*Prime[n]; Table[f[n], {n, 100}]
Extensions
Extended by Ray Chandler, May 07 2005