cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106151 In binary representation of n: delete one zero in each contiguous block of zeros.

Original entry on oeis.org

1, 1, 3, 2, 3, 3, 7, 4, 5, 3, 7, 6, 7, 7, 15, 8, 9, 5, 11, 6, 7, 7, 15, 12, 13, 7, 15, 14, 15, 15, 31, 16, 17, 9, 19, 10, 11, 11, 23, 12, 13, 7, 15, 14, 15, 15, 31, 24, 25, 13, 27, 14, 15, 15, 31, 28, 29, 15, 31, 30, 31, 31, 63, 32, 33, 17, 35, 18, 19, 19, 39, 20, 21, 11, 23, 22, 23
Offset: 1

Views

Author

Reinhard Zumkeller, May 07 2005

Keywords

Comments

Equivalently, change bits 10 -> 0. - Michael S. Branicky, Nov 12 2021

Examples

			n=144 = '10010000' -> '101000' = 40 = a(144);
n=145 = '10010001' -> '101001' = 41 = a(145);
n=146 = '10010010' -> '10101'  = 21 = a(146).
		

Crossrefs

Programs

  • Haskell
    import Data.List (group)
    a106151 = foldr (\b v -> 2 * v + b) 0 . concatMap
       (\bs'@(b:bs) -> if b == 0 then bs else bs') . group . a030308_row
    -- Reinhard Zumkeller, Jul 05 2013
    
  • PARI
    A106151(n) = if(n<=1, n, if(n%2, 1+(2*A106151((n-1)/2)), A106151(n>>valuation(n, 2))<<(valuation(n, 2)-1))); \\ Antti Karttunen, May 13 2018
    
  • PARI
    A106151(n) = { my(s=0, i=0); while(n, if(2!=(n%4), s += (n%2)<>= 1); (s); }; \\ Antti Karttunen, Jul 01 2024
    
  • Python
    def a(n): return int(bin(n).replace("b", "").replace("10", "1"), 2)
    print([a(n) for n in range(1, 78)]) # Michael S. Branicky, Nov 12 2021

Formula

a(n) <= n; a(n) = n iff n = 2^k-1: a(A000225(n))=A000225(n);
A000120(a(n)) = A000120(n);
A023416(a(n)) = A023416(n) - A087116(n).
a(n) = b(n, 0), where b(n, r) = if n = 1 then 1 else b(floor(n/2), 1 - n mod 2)*(1 + floor((1 + r + n mod 2)/2)) + n mod 2.
For n <= 1, a(n) = n, and for n > 1, if n is odd, then a(n) = 1+2*a((n-1)/2), otherwise, when n is even, a(n) = (2^(A007814(n)-1)) * a(A000265(n)). - Antti Karttunen, May 13 2018