cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106171 A triangle with three consecutive primes as sides has an area that is a prime after rounding. The sequence gives the first of the three consecutive primes.

Original entry on oeis.org

5, 11, 23, 59, 71, 89, 211, 239, 269, 349, 389, 419, 431, 467, 479, 521, 571, 577, 647, 863, 983, 1087, 1213, 1223, 1733, 1747, 1759, 1933, 1949, 1973, 2131, 2297, 2411, 2521, 2659, 2879, 2909, 2999, 3011, 3191, 3203, 3209, 3391, 3467, 3469, 3517, 3559
Offset: 1

Views

Author

J. M. Bergot, May 19 2007

Keywords

Examples

			For sides 5,7,11 the formula gives 12.96 and with rounding this becomes 13, a prime.
		

Programs

  • Maple
    s:=proc(n) local a,b,c,p,A: a:=ithprime(n): b:=ithprime(n+1): c:=ithprime(n+2): p:=(a+b+c)/2: A:=sqrt(p*(p-a)*(p-b)*(p-c)): if isprime(round(A))=true then a else fi end: seq(s(n),n=1..700); # Emeric Deutsch, May 25 2007
    Digits := 60 : isA106171 := proc(p) local q,r,s,area ; if isprime(p) then q := nextprime(p) ; r := nextprime(q) ; s := (p+q+r)/2 ; area := round(sqrt(s*(s-p)*(s-q)*(s-r))) ; RETURN(isprime(area)) ; else false ; fi ; end: for n from 1 to 900 do p := ithprime(n) : if isA106171(p) then printf("%d,",p) ; fi ; od : # R. J. Mathar, Jun 08 2007
  • Mathematica
    arQ[{a_,b_,c_}]:=With[{s=(a+b+c)/2},PrimeQ[Round[Sqrt[s(s-a)(s-b)(s-c)]]]]; Select[Partition[Prime[Range[600]],3,1],arQ][[;;,1]] (* Harvey P. Dale, Jul 13 2025 *)

Formula

Simply use the formula for the area of a triangle given the three sides.

Extensions

More terms from Emeric Deutsch and R. J. Mathar, May 25 2007