A106171 A triangle with three consecutive primes as sides has an area that is a prime after rounding. The sequence gives the first of the three consecutive primes.
5, 11, 23, 59, 71, 89, 211, 239, 269, 349, 389, 419, 431, 467, 479, 521, 571, 577, 647, 863, 983, 1087, 1213, 1223, 1733, 1747, 1759, 1933, 1949, 1973, 2131, 2297, 2411, 2521, 2659, 2879, 2909, 2999, 3011, 3191, 3203, 3209, 3391, 3467, 3469, 3517, 3559
Offset: 1
Keywords
Examples
For sides 5,7,11 the formula gives 12.96 and with rounding this becomes 13, a prime.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
s:=proc(n) local a,b,c,p,A: a:=ithprime(n): b:=ithprime(n+1): c:=ithprime(n+2): p:=(a+b+c)/2: A:=sqrt(p*(p-a)*(p-b)*(p-c)): if isprime(round(A))=true then a else fi end: seq(s(n),n=1..700); # Emeric Deutsch, May 25 2007 Digits := 60 : isA106171 := proc(p) local q,r,s,area ; if isprime(p) then q := nextprime(p) ; r := nextprime(q) ; s := (p+q+r)/2 ; area := round(sqrt(s*(s-p)*(s-q)*(s-r))) ; RETURN(isprime(area)) ; else false ; fi ; end: for n from 1 to 900 do p := ithprime(n) : if isA106171(p) then printf("%d,",p) ; fi ; od : # R. J. Mathar, Jun 08 2007
-
Mathematica
arQ[{a_,b_,c_}]:=With[{s=(a+b+c)/2},PrimeQ[Round[Sqrt[s(s-a)(s-b)(s-c)]]]]; Select[Partition[Prime[Range[600]],3,1],arQ][[;;,1]] (* Harvey P. Dale, Jul 13 2025 *)
Formula
Simply use the formula for the area of a triangle given the three sides.
Extensions
More terms from Emeric Deutsch and R. J. Mathar, May 25 2007