cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A131019 Semiperimeters of quadrilaterals whose sides are 4 consecutive odd primes.

Original entry on oeis.org

13, 18, 24, 30, 36, 44, 51, 60, 69, 76, 84, 92, 101, 110, 120, 129, 136, 145, 153, 162, 174, 185, 195, 204, 210, 216, 228, 240, 254, 267, 278, 288, 298, 310, 319, 330, 341, 350, 362, 372, 381, 390, 400, 415, 430, 445, 456, 464, 471, 482, 494, 506, 520, 530
Offset: 1

Views

Author

Jonathan Vos Post, Jun 09 2007

Keywords

Comments

(2+3+5+7)/2 = 8.5, not an integer. Hence we restrict to odd primes. The cyclic quadrilaterals whose areas, rounded, are prime are given in A131020. The prime semiperimeters begin: a(1) = 13, a(13) = 101. This arises in the cyclic quadrilateral analog of A106171.

Examples

			a(1) = (3 + 5 + 7 + 11)/2 = 13.
		

References

  • Coxeter, H. S. M. and Greitzer, S. L. "Cyclic Quadrangles; Brahmagupta's Formula", Sect. 3.2 in Geometry Revisited. Washington, DC: Math. Assoc. Amer., pp. 56-60, 1967.

Crossrefs

Programs

  • Maple
    A131019 := proc(n) local i ; add( ithprime(n+i),i=1..4)/2 ; end: for n from 1 to 180 do printf("%d, ",A131019(n)) : od:
  • Mathematica
    Plus@@@Partition[Prime[Range[2,6! ]],4,1]/2 (* Vladimir Joseph Stephan Orlovsky, Feb 18 2010 *)

Formula

a(n) = (prime(n) + prime(n+1) + prime(n+2) + prime(n+3))/2 for n>1.
a(n) = (prime(n+1) + prime(n+2) + prime(n+3) + prime(n+4))/2 = A034963(n)/2.

Extensions

Edited by R. J. Mathar, Jun 12 2007

A131020 For all cyclic quadrilaterals with four consecutive primes as sides that have an area that is prime after rounding, the sequence gives the first of these four consecutive primes.

Original entry on oeis.org

3, 5, 13, 17, 61, 67, 97, 139, 157, 163, 173, 223, 271, 349, 353, 419, 479, 503, 541, 691, 701, 743, 877, 941, 1013, 1049, 1051, 1097, 1123, 1229, 1231, 1249, 1297, 1301, 1423, 1453, 1493, 1531, 1559, 1607, 1621, 1697, 1811, 1901, 1999, 2017, 2027, 2053, 2087
Offset: 1

Views

Author

Jonathan Vos Post, Jun 09 2007

Keywords

Comments

The semiperimeters of cyclic quadrilaterals with four consecutive odd prime sides are given in A131019. This arises in the cyclic quadrilateral analog of A106171.

Examples

			a(5) = 61 because (61 + 67 + 71 + 73)/2 = 136 and sqrt((136 - 61)*(136 - 67)*(136 - 71)*(136 - 73)) = 4603.43622 and round(4603.43622) = 4603 is prime.
		

References

  • Coxeter, H. S. M. and Greitzer, S. L. "Cyclic Quadrangles; Brahmagupta's Formula", Sect. 3.2 in Geometry Revisited. Washington, DC: Math. Assoc. Amer., pp. 56-60, 1967.

Crossrefs

Programs

  • Maple
    Digits := 80 : isA131020 := proc(p) local p2,p3,p4,s,area; if isprime(p) then p2 := nextprime(p) ; p3 := nextprime(p2) ; p4 := nextprime(p3) ; s := (p+p2+p3+p4)/2 ; area := round(sqrt((s-p)*(s-p2)*(s-p3)*(s-p4))) ; RETURN(isprime(area)) ; else false ; fi ; end: for n from 1 to 380 do if isA131020(ithprime(n)) then printf("%d,",ithprime(n)) ; fi ; od;

Formula

a(n) = prime(k) for some k such that, where S = semiperimeter = (prime(k) + prime(k+1) + prime(k+2) + prime(k+3))/2 is an element of A131019 and rounded area = round(sqrt((S-prime(k))*(S-prime(k+1))*(S-prime(k+2))*(S-prime(k+3)))) is prime.

Extensions

Edited by R. J. Mathar, Jun 12 2007

A360790 Squared length of diagonal of right trapezoid with three consecutive prime length sides.

Original entry on oeis.org

8, 13, 41, 53, 137, 173, 305, 397, 533, 877, 977, 1373, 1697, 1885, 2245, 2813, 3517, 3737, 4493, 5077, 5345, 6277, 6953, 7937, 9413, 10217, 10613, 11465, 12077, 12785, 16165, 17165, 18869, 19325, 22237, 22837, 24665, 26605, 27925, 29933, 32141, 32765, 36497, 37253, 38953, 39745
Offset: 1

Views

Author

Aaron T Cowan, Feb 20 2023

Keywords

Comments

The value d is the square of the length of the diagonal of a trapezoid with a height and bases that are consecutive primes, respectively. The diagonal length is calculated using the Pythagorean theorem, but this distance is squared so that the value is an integer.

Examples

			        p(2)=3
        _ _ _ _
a(1):  |        \  d^2=2^2+(5-3)^2=8
p(1)=2 |_ _ _ _ _\
        p(3)=5
        p(3)=5
        _ _ _ _ _ _
a(2):  |           \    d^2=3^2 + (7-5)^2 = 9+4 = 13
p(2)=3 |            \
       |_ _ _ _ _ _ _\
        p(4)=7
a(3)= 5^2+(11-7)^2 = 25+16 = 41
a(7)= 17^2+(23-19)^2=305 = 5*61
		

Crossrefs

Programs

  • MATLAB
    %shorter 1 line version
    arrayfun(@(p) p^2+(nextprime(nextprime(p+1)+1)-nextprime(p+1))^2,[primes(10^6)])
    
  • Mathematica
    Map[(#[[1]]^2 + (#[[3]] - #[[2]])^2) &, Partition[Prime[Range[50]], 3, 1]] (* Amiram Eldar, Feb 24 2023 *)
  • PARI
    a(n) = prime(n)^2 + (prime(n+2)-prime(n+1))^2; \\ Michel Marcus, Feb 23 2023

Formula

a(n) = prime(n)^2 + (prime(n+2)-prime(n+1))^2.
a(n) = A001248(n) + A076821(n+1). - Michel Marcus, Feb 23 2023
Showing 1-3 of 3 results.