A106177 Functional composition table for "n o m" = "n composed with m", where n and m are the "primal codes" of finite partial functions on the positive integers and 1 is the code for the empty function.
1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 4, 1, 1, 5, 2, 9, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 7, 1, 25, 1, 3, 1, 1, 1, 1, 1, 36, 1, 2, 1, 8, 1, 1, 1, 1, 49, 1, 5, 1, 27, 1, 1, 1, 10, 3, 1, 1, 6, 1, 1, 1, 2, 1, 1, 11, 1, 1, 2, 7, 1, 125, 4, 3, 1, 1, 1, 3, 1, 100, 1, 1, 1, 216, 1, 1, 1, 4, 1, 1, 13
Offset: 1
Examples
` ` ` ` ` ` ` ` ` ` `n o m ` ` ` ` ` ` ` ` ` ` ` \ / ` ` ` ` ` ` ` ` ` ` `1 . 1 ` ` ` ` ` ` ` ` ` ` \ / \ / ` ` ` ` ` ` ` ` ` `2 . 1 . 2 ` ` ` ` ` ` ` ` ` \ / \ / \ / ` ` ` ` ` ` ` ` `3 . 1 . 1 . 3 ` ` ` ` ` ` ` ` \ / \ / \ / \ / ` ` ` ` ` ` ` `4 . 1 . 2 . 1 . 4 ` ` ` ` ` ` ` \ / \ / \ / \ / \ / ` ` ` ` ` ` `5 . 1 . 3 . 1 . 1 . 5 ` ` ` ` ` ` \ / \ / \ / \ / \ / \ / ` ` ` ` ` `6 . 1 . 1 . 1 . 4 . 1 . 6 ` ` ` ` ` \ / \ / \ / \ / \ / \ / \ / ` ` ` ` `7 . 1 . 5 . 2 . 9 . 1 . 1 . 7 ` ` ` ` \ / \ / \ / \ / \ / \ / \ / \ / ` ` ` `8 . 1 . 6 . 1 . 1 . 1 . 2 . 1 . 8 ` ` ` \ / \ / \ / \ / \ / \ / \ / \ / \ / ` ` `9 . 1 . 7 . 1 . 25. 1 . 3 . 1 . 1 . 9 ` ` \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / ` 10 . 1 . 1 . 1 . 36. 1 . 2 . 1 . 8 . 1 . 10 Primal codes of finite partial functions on positive integers: 1 = { } 2 = 1:1 3 = 2:1 4 = 1:2 5 = 3:1 6 = 1:1 2:1 7 = 4:1 8 = 1:3 9 = 2:2 10 = 1:1 3:1 11 = 5:1 12 = 1:2 2:1 13 = 6:1 14 = 1:1 4:1 15 = 2:1 3:1 16 = 1:4 17 = 7:1 18 = 1:1 2:2 19 = 8:1 20 = 1:2 3:1 From _Antti Karttunen_, Nov 16 2019: (Start) When the sequence is viewed as a square array read by falling antidiagonals, the top left 15 X 15 corner looks like this: k= | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ----+-------------------------------------------------------------------- n= 1| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2| 1, 2, 3, 1, 5, 6, 7, 1, 1, 10, 11, 3, 13, 14, 15, 3| 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 4| 1, 4, 9, 1, 25, 36, 49, 1, 1, 100, 121, 9, 169, 196, 225, 5| 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6| 1, 2, 3, 2, 5, 6, 7, 1, 3, 10, 11, 6, 13, 14, 15, 7| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8| 1, 8, 27, 1, 125, 216, 343, 1, 1, 1000, 1331, 27, 2197, 2744, 3375, 9| 1, 1, 1, 4, 1, 1, 1, 1, 9, 1, 1, 4, 1, 1, 1, 10| 1, 2, 3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 11| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12| 1, 4, 9, 2, 25, 36, 49, 1, 3, 100, 121, 18, 169, 196, 225, 13| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 14| 1, 2, 3, 1, 5, 6, 7, 1, 1, 10, 11, 3, 13, 14, 15, 15| 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, (End)
Links
- Antti Karttunen, Table of n, a(n) for n = 1..25425; the first 225 antidiagonals of the array
- J. Awbrey, Riffs and Rotes
Crossrefs
Programs
-
PARI
up_to = 105; A106177sq(n,k) = { my(f = factor(k)); prod(i=1,#f~,f[i, 1]^valuation(n, prime(f[i, 2]))); }; A106177list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A106177sq(col,(a-(col-1))))); (v); }; v106177 = A106177list(up_to); A106177(n) = v106177[n]; \\ Antti Karttunen, Nov 16 2019
Formula
If k = Product p_i^e_i, A(n,k) = p_i^A286561(n, A000040(e_i)), where A286561(x,y) gives the y-valuation of x. - Antti Karttunen, Nov 16 2019
Comments