A106179 Triangle read by rows: T(n,k) is the number of series-reduced planted trees with n leaves and k internal nodes.
1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 4, 10, 12, 6, 1, 5, 16, 29, 28, 11, 1, 6, 24, 57, 84, 66, 23, 1, 7, 33, 99, 192, 231, 157, 46, 1, 8, 44, 157, 382, 615, 634, 373, 98, 1, 9, 56, 234, 682, 1380, 1905, 1704, 890, 207, 1, 10, 70, 333, 1133, 2755, 4782, 5746, 4554, 2130, 451
Offset: 2
Examples
Triangle begins: 1; 1, 1; 1, 2, 2; 1, 3, 5, 3; 1, 4, 10, 12, 6; 1, 5, 16, 29, 28, 11; 1, 6, 24, 57, 84, 66, 23; 1, 7, 33, 99, 192, 231, 157, 46; 1, 8, 44, 157, 382, 615, 634, 373, 98; ...
References
- J. Riordan, The blossoming of Schroeder's fourth problem, Acta Math., 137 (1976), 1-16.
Links
- Andrew Howroyd, Table of n, a(n) for n = 2..1276
Programs
-
PARI
EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)} A(n)={my(v=vector(n)); v[1]=1; for(n=2, n, v[n]=y*EulerMT(v[1..n])[n]); apply(p -> Vecrev(p/y), v[2..n])} { my(T=A(10)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Sep 01 2018
Formula
A001678(n) = Sum_{i=2..n-2} T(i, n-1-i) for n >= 3. - Marko Riedel, Mar 29 2021
Extensions
Name clarified and terms a(38) and beyond from Andrew Howroyd, Sep 01 2018