A106198 Triangle, columns = successive binomial transforms of Fibonacci numbers.
1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 5, 13, 10, 4, 1, 8, 34, 35, 17, 5, 1, 13, 89, 125, 75, 26, 6, 1, 21, 233, 450, 338, 139, 37, 7, 1, 34, 610, 1625, 1541, 757, 233, 50, 8, 1
Offset: 0
Examples
First few rows of the triangle are: 1; 1, 1; 2, 2, 1; 3, 5, 3, 1; 5, 13, 10, 4, 1; 8, 34, 35, 17, 5, 1; 13, 89, 125, 75, 26, 6, 1; 21, 233, 450, 338, 139, 37, 7, 1; ... Column 2 = A081567, second binomial transform of Fibonacci numbers: 1, 3, 10, 35, 125, ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
T:= function(n,k) if k=0 then return Fibonacci(n+1); else return Sum([0..n-k], j-> Binomial(n-k,j)*Fibonacci(j+1)*k^(n-k-j)); fi; end; Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Dec 11 2019
-
Magma
function T(n,k) if k eq 0 then return Fibonacci(n+1); else return (&+[Binomial(n-k,j)*Fibonacci(j+1)*k^(n-k-j): j in [0..n-k]]); end if; return T; end function; [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 11 2019
-
Maple
with(combinat); T:= proc(n, k) option remember; if k=0 then fibonacci(n+1) else add( binomial(n-k,j)*fibonacci(j+1)*k^(n-k-j), j=0..n-k) fi; end: seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Dec 11 2019
-
Mathematica
Table[If[k==0, Fibonacci[n+1], Sum[Binomial[n-k, j]*Fibonacci[j+1]*k^(n-k-j), {j,0,n-k}]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 11 2019 *)
-
PARI
T(n,k) = if(k==0, fibonacci(n+1), sum(j=0,n-k, binomial(n-k,j)*fibonacci( j+1)*k^(n-k-j)) ); \\ G. C. Greubel, Dec 11 2019
-
Sage
@CachedFunction def T(n, k): if (k==0): return fibonacci(n+1) else: return sum(binomial(n-k,j)*fibonacci(j+1)*k^(n-k-j) for j in (0..n-k)) [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 11 2019
Formula
Offset column k = k-th binomial transform of the Fibonacci numbers, given leftmost column = Fibonacci numbers.
Comments