A106203 Coefficients of ((j(q)-1728)q)^(1/24) where j(q) is the elliptic modular invariant.
1, -41, -11128, -3785793, -1476507895, -618962022329, -271503819749095, -122857395553223337, -56870247894888518054, -26784343611333662213130, -12787694574831980406719382, -6172809198874485994313412898
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..367
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[((256/QPochhammer[-1, x]^8 + x*QPochhammer[-1, x]^16/256)^3 - 1728*x)^(1/24), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 07 2018 *)
-
PARI
{a(n)=if(n<0,0, polcoeff( ((ellj(x+x^2*O(x^n))-1728)*x)^(1/24),n))}
Formula
G.f.: Product_{k>=1} (1-q^k)^(A289061(k)/24). - Seiichi Manyama, Jul 02 2017
a(n) ~ c * exp(2*Pi*n) / n^(13/12), where c = -2^(1/12) * Pi^(25/12) * exp(-Pi/12) / (3^(13/12) * Gamma(2/3)^2 * Gamma(3/4)^(7/3) * Gamma(1/12)) = -0.0794786705643291777786030631826408355507134016936764993676699378963... - Vaclav Kotesovec, Mar 07 2018