A106205 Expansion of (q*j(q))^(1/24) where j(q) is the elliptic modular invariant (A000521).
1, 31, -2848, 413823, -68767135, 12310047967, -2309368876639, 447436508910495, -88755684988520798, 17924937024841839390, -3671642907594608226078, 760722183234128461061246, -159105706560247952472114973
Offset: 0
Keywords
Examples
1 + 31*q - 2848*q^2 + 413823*q^3 - 68767135*q^4 + 12310047967*q^5 - 2309368876639*q^6 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..424
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^(1/8) / (2*QPochhammer[-1, x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 23 2017 *) (q*1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^(1/24) + O[q]^13 // CoefficientList[#, q]& (* Jean-François Alcover, Nov 02 2017 *)
-
PARI
{a(n)=if(n<0,0, polcoeff( (ellj(x+x^2*O(x^n))*x)^(1/24),n))}
Formula
This is essentially the eighth root of the theta series of E_8 (A108091), divided by the Dedekind eta function. - N. J. A. Sloane, Aug 08 2005
G.f.: Product_{n>=1} (1-q^n)^(A192731(n)/24). - Seiichi Manyama, Jul 02 2017
a(n) ~ (-1)^(n+1) * c * exp(Pi*sqrt(3)*n) / n^(9/8), where c = 0.11364889078525240958152388212499254894082832445224690827436413842337... = 3^(1/8) * sqrt(2 - sqrt(2)) * Gamma(1/8) * Gamma(1/3)^(3/4) / (2^(33/8) * exp(Pi/(8 * sqrt(3))) * Pi^(3/2)). - Vaclav Kotesovec, Jul 02 2017, updated Mar 06 2018
a(n) * A289397(n) ~ c * exp(2*Pi*sqrt(3)*n) / n^2, where c = -sqrt(2-sqrt(2)) / (16*Pi). - Vaclav Kotesovec, Mar 06 2018
Comments